Math 185 Homework 4.Due Wednesday 2/19

Do two of the following three problems. If you do all three, indicate
hich two you want graded. which two you want graded.

1. Let λ be a complex number and let $\Omega=\mathbb{C} \backslash \lambda \cdot \mathbb{R}_{\geq 0}$ be the complement in \mathbb{C} to all real positive multiples of λ.
(a) Show that the function $z \mapsto z^{3}$ has a continuous inverse function, called ${ }^{3} \sqrt{z}$, on Ω. (Hint: polar coordinates might help). Prove that there are exactly three different such continuous functions. Deduce that there is no continuous extension of $\sqrt[3]{z}$ on all of $\mathbb{C} \backslash\{0\}$ (hint: if such a function existed, it would extend one of the three functions you defined. Now try to check continuity.)
(b) Show that $\sqrt{3} \sqrt{z}$ (for any of the functions you defined on Ω) is holomorphic.
2. (a) Assume $\gamma:[0, T] \rightarrow C_{1}$ is a path all of whose values are on the unit circle, $C_{1} \subset \mathbb{C}$. Define $U(\gamma)$, the unwinding of γ, to be the path $[0, T] \rightarrow i \mathbb{R}$ to the imaginary axis given by $t \mapsto \int_{0}^{t} \frac{\dot{\gamma}(u)}{\gamma(u)} d u$. Show that the composition $\exp \circ U(\gamma)=$ $\frac{\gamma}{\gamma(0)}$ as functions $[0, T] \rightarrow \mathbb{C}$ (for starters, notice that $\exp \circ U(\gamma)$ has values on the unit circle since $U(\gamma)$ has values on the imaginary line).
(b) Deduce that if $\gamma:[0, T] \rightarrow C_{1}$ is a loop with $\gamma(0)=\gamma(T)$, then $U \gamma(T)=$ $2 \pi i k$ for some $k \in \mathbb{Z}$. This number k is called the winding number of the loop γ and denoted $W(\gamma)$. Compute the winding number of the loop $\gamma(t)=\exp (i t)$ for $t \in[0,2 \pi]$.
(c) Show that if $\gamma_{s}(t)$ is a family of loops which is varying continuously, i.e. it is a continuous function in both $t \in[0, T]$ and $s \in[0,1]$ and $\gamma_{s}(0)=\gamma_{s}(T)$ for all $s \in[0,1]$, then the winding numbers $W(\gamma)$ are the same for all s. Hint: you may use that any finite integral $\int_{0}^{t_{0}} f_{s}(t) d t$ of a continuously varying family of functions depends continuously on s.

The upshot of this problem is that the winding number does not change under homotopies.

3. II. 5 from Stein-Shakarchi (chapter 2 section 6).

