Math 185 Homework 3 select solutions and hints.

This homework set is taken from Stein and Shakarchi, Chapter 1.4 and 11.6
(exercises for all of chapter I and II). Exercise I.n denotes exercise n of chapter
1.4, and similarly for IL.n.

1. I.13
(a) Assume Re(f) is constant, equal to a. Then both % = f" and %‘ =qf’

have real part 0, so f/ = 0, and f must be constant.
(b) similar to (a).
(c) If | f| = 0, we’re done. So assume |f| =r for r # 0.

Option 1: It’s enough to show f is constant in a neighborhood of each
zo € C (this would for example imply f’ = 0 everywhere and f is constant).

Let g(z) = ch((;)). Then in some neighborhood of zy, the function g does not

take negative real values so log(g) is defined and holomorphic and satisfies the
condition of part (a).
Option 2: Use the polar form of Cauchy in the following form: If f(z) =

r(2) exp(i6(z)) with (r, #) the radial and angular part, then (assuming r(2) )
the Cauchy equation is equivalent to g—g = 1| Ordy and % = |z| - —?.
Y
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2. Do ONE OF 1.20, I.21 If you do both, indicate which one you want graded

(I recommend trying to do both for fun.) The notation a,, ~ b, is “asymptotic
by

equality”, i.e. the statement that the limit of the quotients lim ;= = 1.

m
L.20 &= = >"°7 2" By an inductive argument, (i) =3 ("+m71) 2",

T—2 m—1

Use (";T;l) = 7”"('7?;%?‘2 for the asymptotic.

z_ k
L21 %, =35, 2%, and
n
1 — p2nt? = Z z

k is divisible by 2™ but not by 2n+1

Now use absolute convergence to rearrange the second sum and see that each
P appears exactly one in it.



3. 1.24, 1.25 Don’t worry about being rigorous for these, treat them as calculus
problems about one-dimensional integrals. For I.25: n can be negative! You are
not allowed to use the antiderivative trick for this computation (though you can
use it to check your answer). No solution: calculus (for 1.25, the tricky integrals
are to show the usefulness of later contour integral theorems).

4. IL1 Let f(z) = e % . Since f(z) = Ym0 ZZ—,n has an everywhere con-
vergent power series, it has an everywhere convergent antiderivative F(z) =
S50 22" nl - (2n + 1). Therefore its integral around any loop is equal to zero.
Now let v be the contour in figure 14 (in the problem). Since it is a loop, the
path integral fv f(2)dz = 0. This integral is 0 = I, + Iq + I., where I}, is the
integral along the horizontal stretch, I is the integral along the diagonal stretch
from 0 to R(s = R-e’® and I is the integral along the chord. Using the formula

fv f(z)dz = ftT:o F(y(®)) - 4(t)dt, we have

R
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Ia = / e~ (0" (—¢g)dt,
t=0

7\'/4 102 -
I, = / e~ (B i Re'? dg.
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All three of Iy, I4, I, are functions of R. Let I;(c0) = limp_o0 I5(R), and
similarly with I4(00), I,(00). Observe that

I oo ) %) L oo
La(o0) :/ e~ (60 gt :/ e " dt = / cos(t?) — isin(t?)dt.
—Cs 0 t=0 0

Ta(o0)

Thus the real and imaginary parts of precisely give the desired integrals.

The key idea now is that, by taking the R — oo limit of the equation
In(R)+ Ii(R) + I.(R) = 0 we get I (00) = —I4(00) — I,(00). The result follows
from the following lemma.

Lemma 1. I,(c0) = /7 and I,(c0) = 0.

. [e'e] 42 . 42 . . .
Proof. We are given f_oo e ¥ dt = /7. Since ™! is an even function, it follows

that Ij,(c0) = [, e Vdt = 2157 e tdt = @
Next we compute I,(c0). To show this is zero, it is enough to show that
I,(R) is bounded by a function of R that goes to zero. By the triangle inequality

Iy = 9713 e~ (Be')? i Rei®d0 is bounded by

7\'/4 602 ;
gt ::/ e~ ()" iRe™|df,
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the integral of the absolute value of the integrand. Compute each term individ-
ually: |e*(R€16)2| R2e®?) _ gRe(—(R?e™?)) _ o—R s(20) " and |iRe*| = R.
Thus

= |€7

w/4 /4
I;"(R) = / e T eos20) . Rag = R / et cos(20) g,
0 0
This is a real integral. Substituting
p=m/2—20

and using cos(7/2 — ¢) = sin(¢), we write

R 7!‘/2 3
Igbs (R) — 5 /O e—R2 Sln(¢)d¢5.

The intuition is to now observe that for small ¢, we have e~ R sin(9) e’Rz‘b,
and this integral is bounded by ~ % fooo 6_12, and that for ¢ approaching /2
the value e=%°? goes to zero much faster than 1/R' One way to make this
observation rigorous is to use that for 0 < ¢ < m/2, the graph of the sin
function is convex, so it is bounded below by the line from (0,0) to (F,1);
in other words, for ¢ € [0,7/2] we have sin(¢) > 2¢. This implies that our

integrand e~ R?sin(9) < e~ F* 2% We deduce
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Thus in the R — oo limit we have for ¢ = %/2 a constant that [, (R)]

<
I (R) < ¢/R, and so I,(o0) = 0. O

Since I,(o0) = 0, the vanishing of the contour integral implies that I,
I, =V

5
We now conclude by computing

[ ot =i [ntet) = 2 =gy (Y2 = T

du

Vi-u?’

Lalternatively, one can do a substitution u = sin(26), dt =



