Math 185 Homework 3 select solutions and hints.

This homework set is taken from Stein and Shakarchi, Chapter I. 4 and II. 6 (exercises for all of chapter I and II). Exercise I.n denotes exercise n of chapter I.4, and similarly for II.n.

1. I. 13

(a) Assume $R e(f)$ is constant, equal to a. Then both $\frac{\partial f}{\partial x}=f^{\prime}$ and $\frac{\partial f}{\partial y}=i f^{\prime}$ have real part 0 , so $f^{\prime}=0$, and f must be constant.
(b) similar to (a).
(c) If $|f|=0$, we're done. So assume $|f|=r$ for $r \neq 0$.

Option 1: It's enough to show f is constant in a neighborhood of each $z_{0} \in \mathbb{C}$ (this would for example imply $f^{\prime}=0$ everywhere and f is constant). Let $g(z)=\frac{f(z)}{f\left(z_{0}\right)}$. Then in some neighborhood of z_{0}, the function g does not take negative real values so $\log (g)$ is defined and holomorphic and satisfies the condition of part (a).

Option 2: Use the polar form of Cauchy in the following form: If $f(z)=$ $r(z) \exp (i \theta(z))$ with (r, θ) the radial and angular part, then (assuming $r(z) \neq 0)$ the Cauchy equation is equivalent to $\frac{\partial \theta}{\partial x}=\frac{1}{|z|} \partial r \partial y$ and $\frac{\partial r}{\partial x}=|z| \cdot-\frac{\partial \theta}{\partial y}$.
2. Do ONE OF I.20, I. 21 If you do both, indicate which one you want graded (I recommend trying to do both for fun.) The notation $a_{n} \sim b_{n}$ is "asymptotic equality", i.e. the statement that the limit of the quotients $\lim \frac{b_{n}}{a_{n}}=1$.
I. $20 \frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$. By an inductive argument, $\left(\frac{1}{1-z}\right)^{m}=\sum_{n=0}^{\infty}\binom{n+m-1}{m-1} z^{n}$. Use $\binom{n+m-1}{m-1}=\frac{n \cdots n-m+2}{(m-1)!}$ for the asymptotic.
I. $21 \frac{z}{1-z}=\sum_{k \geq 1} z^{k}$, and

$$
\frac{z^{2^{n}}}{1-z^{2^{n+1}}}=\sum_{k \text { is divisible by } 2^{n} \text { but not by } 2^{n+1}} z^{k}
$$

Now use absolute convergence to rearrange the second sum and see that each z^{k} appears exactly one in it.
3. I.24, I.25 Don't worry about being rigorous for these, treat them as calculus problems about one-dimensional integrals. For I.25: n can be negative! You are not allowed to use the antiderivative trick for this computation (though you can use it to check your answer). No solution: calculus (for I. 25 , the tricky integrals are to show the usefulness of later contour integral theorems).
4. II. 1 Let $f(z)=e^{-z^{2}}$. Since $f(z)=\sum_{n \geq 0} \frac{z^{2 n}}{n!}$ has an everywhere convergent power series, it has an everywhere convergent antiderivative $F(z)=$ $\sum_{n \geq 0} z^{2 n+1} n!\cdot(2 n+1)$. Therefore its integral around any loop is equal to zero. Now let γ be the contour in figure 14 (in the problem). Since it is a loop, the path integral $\int_{\gamma} f(z) d z=0$. This integral is $0=I_{h}+I_{d}+I_{c}$, where I_{h} is the integral along the horizontal stretch, I_{d} is the integral along the diagonal stretch from 0 to $R \zeta_{8}=R \cdot e^{\frac{\pi i}{4}}$ and I_{c} is the integral along the chord. Using the formula $\int_{\gamma} f(z) d z=\int_{t=0}^{T} f(\gamma(t)) \cdot \dot{\gamma}(t) d t$, we have

$$
\begin{gathered}
I_{h}=\int_{t=0}^{R} e^{-t^{2}} d t \\
I_{d}=\int_{t=0}^{R} e^{-\left(\zeta_{8} t\right)^{2}} \cdot\left(-\zeta_{8}\right) d t \\
I_{a}=\int_{\theta=0}^{\pi / 4} e^{-\left(R e^{i \theta}\right)^{2}} \cdot i R e^{i \theta} d \theta
\end{gathered}
$$

All three of I_{h}, I_{d}, I_{a} are functions of R. Let $I_{h}(\infty)=\lim _{R \rightarrow \infty} I_{h}(R)$, and similarly with $I_{d}(\infty), I_{a}(\infty)$. Observe that

$$
\frac{I_{d}(\infty)}{-\zeta_{8}}=\int_{0}^{\infty} e^{-\left(\zeta_{8} t\right)^{2}} d t=\int_{t=0}^{\infty} e^{-i t^{2}} d t=\int_{0}^{\infty} \cos \left(t^{2}\right)-i \sin \left(t^{2}\right) d t
$$

Thus the real and imaginary parts of $\frac{I_{d}(\infty)}{-\zeta_{8}}$ precisely give the desired integrals.
The key idea now is that, by taking the $R \rightarrow \infty$ limit of the equation $I_{h}(R)+I_{d}(R)+I_{a}(R)=0$ we get $I_{h}(\infty)=-I_{d}(\infty)-I_{a}(\infty)$. The result follows from the following lemma.

Lemma 1. $I_{h}(\infty)=\frac{1}{2} \sqrt{\pi}$ and $I_{a}(\infty)=0$.
Proof. We are given $\int_{-\infty}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}$. Since $e^{-t^{2}}$ is an even function, it follows that $I_{h}(\infty)=\int_{0}^{\infty} e^{-t^{2}} d t=\frac{1}{2} \int_{0}^{\infty} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}$.

Next we compute $I_{a}(\infty)$. To show this is zero, it is enough to show that $I_{a}(R)$ is bounded by a function of R that goes to zero. By the triangle inequality $I_{a}=\int_{\theta=0}^{\pi / 4} e^{-\left(R e^{i \theta}\right)^{2}} \cdot i R e^{i \theta} d \theta$ is bounded by

$$
I_{a}^{a b s}:=\int_{\theta=0}^{\pi / 4}\left|e^{-\left(R e^{i \theta}\right)^{2}} \cdot i R e^{i \theta}\right| d \theta
$$

the integral of the absolute value of the integrand. Compute each term individually: $\left|e^{-\left(R e^{i \theta}\right)^{2}}\right|=\left|e^{-R^{2} e^{2 i \theta}}\right|=e^{\operatorname{Re}\left(-\left(R^{2} e^{2 i \theta}\right)\right)}=e^{-R^{2} \cos (2 \theta)}$, and $\left|i R e^{i \theta}\right|=R$. Thus

$$
I_{a}^{a b s}(R)=\int_{0}^{\pi / 4} e^{-R^{2} \cos (2 \theta)} \cdot R d \theta=R \int_{0}^{\pi / 4} e^{-R^{2} \cos (2 \theta)} d \theta
$$

This is a real integral. Substituting

$$
\phi=\pi / 2-2 \theta
$$

and using $\cos (\pi / 2-\phi)=\sin (\phi)$, we write

$$
I_{a}^{a b s}(R)=\frac{R}{2} \int_{0}^{\pi / 2} e^{-R^{2} \sin (\phi)} d \phi
$$

The intuition is to now observe that for small ϕ, we have $e^{-R^{2} \sin (\phi)} \approx e^{-R^{2} \phi}$, and this integral is bounded by $\approx \frac{1}{R^{2}} \int_{0}^{\infty} e^{-x^{2}}$, and that for ϕ approaching $\pi / 2$ the value $e^{-R^{2} \phi}$ goes to zero much faster than $1 / R^{1}$ One way to make this observation rigorous is to use that for $0 \leq \phi \leq \pi / 2$, the graph of the sin function is convex, so it is bounded below by the line from $(0,0)$ to $\left(\frac{\pi}{2}, 1\right)$; in other words, for $\phi \in[0, \pi / 2]$ we have $\sin (\phi) \geq \frac{2}{\pi} \phi$. This implies that our integrand $e^{-R^{2} \sin (\phi)} \leq e^{-R^{2} \frac{2}{\pi} \phi}$. We deduce

$$
\begin{aligned}
I_{a}^{a b s}(R) \leq \frac{R}{2} \int_{0}^{\pi / 2} e^{-R^{2} \frac{2}{\pi} \phi^{2}} d \phi & \leq \\
\frac{R}{2} \frac{\pi}{2 R^{2}} \int_{0}^{\frac{2 R^{2}}{\pi}} e^{-R^{2}} & \leq \\
\frac{\pi}{4 R} \int_{0}^{\infty} e^{-R^{2}} & =\frac{\pi^{3 / 2}}{8 R}
\end{aligned}
$$

Thus in the $R \rightarrow \infty$ limit we have for $c=\frac{\pi^{3 / 2}}{8}$ a constant that $\left|I_{a}(R)\right| \leq$ $I_{a}^{a b s}(R) \leq c / R$, and so $I_{a}(\infty)=0$.

Since $I_{a}(\infty)=0$, the vanishing of the contour integral implies that $I_{d}=$ $-I_{h}=-\frac{\sqrt{\pi}}{2}$.

We now conclude by computing

$$
\int_{0}^{\infty} \cos \left(t^{2}\right)-i \int_{0}^{\infty} \sin \left(t^{2}\right)=\frac{I_{d}}{-\zeta_{8}}=I_{d} \cdot\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)=\frac{\sqrt{\pi}}{2}-i \frac{\sqrt{\pi}}{2}
$$

[^0]
[^0]: ${ }^{1}$ alternatively, one can do a substitution $u=\sin (2 \theta), d t=\frac{d u}{\sqrt{1-u^{2}}}$.

