
Math 185 Homework 3 select solutions and hints.

This homework set is taken from Stein and Shakarchi, Chapter I.4 and II.6
(exercises for all of chapter I and II). Exercise I.n denotes exercise n of chapter
I.4, and similarly for II.n.

1. I.13
(a) Assume Re(f) is constant, equal to a. Then both ∂f

∂x = f ′ and ∂f
∂y = if ′

have real part 0, so f ′ = 0, and f must be constant.

(b) similar to (a).

(c) If |f | = 0, we’re done. So assume |f | = r for r 6= 0.
Option 1: It’s enough to show f is constant in a neighborhood of each

z0 ∈ C (this would for example imply f ′ = 0 everywhere and f is constant).

Let g(z) = f(z)
f(z0)

. Then in some neighborhood of z0, the function g does not

take negative real values so log(g) is defined and holomorphic and satisfies the
condition of part (a).

Option 2: Use the polar form of Cauchy in the following form: If f(z) =
r(z) exp(iθ(z)) with (r, θ) the radial and angular part, then (assuming r(z) 6= 0)
the Cauchy equation is equivalent to ∂θ

∂x = 1
|z|∂r∂y and ∂r

∂x = |z| · − ∂θ
∂y .

2. Do ONE OF I.20, I.21 If you do both, indicate which one you want graded
(I recommend trying to do both for fun.) The notation an ∼ bn is “asymptotic
equality”, i.e. the statement that the limit of the quotients lim bn

an
= 1.

I.20 1
1−z =

∑∞
n=0 z

n. By an inductive argument,
(

1
1−z

)m
=
∑∞
n=0

(
n+m−1
m−1

)
zn.

Use
(
n+m−1
m−1

)
= n···n−m+2

(m−1)! for the asymptotic.

I.21 z
1−z =

∑
k≥1 z

k, and

z2
n

1− z2n+1 =
∑

k is divisible by 2n but not by 2n+1

zk.

Now use absolute convergence to rearrange the second sum and see that each
zk appears exactly one in it.
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3. I.24, I.25 Don’t worry about being rigorous for these, treat them as calculus
problems about one-dimensional integrals. For I.25: n can be negative! You are
not allowed to use the antiderivative trick for this computation (though you can
use it to check your answer). No solution: calculus (for I.25, the tricky integrals
are to show the usefulness of later contour integral theorems).

4. II.1 Let f(z) = e−z
2

. Since f(z) =
∑
n≥0

z2n

n! has an everywhere con-
vergent power series, it has an everywhere convergent antiderivative F (z) =∑
n≥0 z

2n+1n! · (2n+ 1). Therefore its integral around any loop is equal to zero.
Now let γ be the contour in figure 14 (in the problem). Since it is a loop, the
path integral

∫
γ
f(z)dz = 0. This integral is 0 = Ih + Id + Ic, where Ih is the

integral along the horizontal stretch, Id is the integral along the diagonal stretch
from 0 to Rζ8 = R ·eπi4 and Ic is the integral along the chord. Using the formula∫
γ
f(z)dz =

∫ T
t=0

f(γ(t)) · γ̇(t)dt, we have

Ih =

∫ R

t=0

e−t
2

dt,

Id =

∫ R

t=0

e−(ζ8t)
2

· (−ζ8)dt,

Ia =

∫ π/4

θ=0

e−(Re
iθ)2 · iReiθdθ.

All three of Ih, Id, Ia are functions of R. Let Ih(∞) = limR→∞ Ih(R), and
similarly with Id(∞), Ia(∞). Observe that

Id(∞)

−ζ8
=

∫ ∞
0

e−(ζ8t)
2

dt =

∫ ∞
t=0

e−it
2

dt =

∫ ∞
0

cos(t2)− i sin(t2)dt.

Thus the real and imaginary parts of Id(∞)
−ζ8 precisely give the desired integrals.

The key idea now is that, by taking the R → ∞ limit of the equation
Ih(R) + Id(R) + Ia(R) = 0 we get Ih(∞) = −Id(∞)− Ia(∞). The result follows
from the following lemma.

Lemma 1. Ih(∞) = 1
2

√
π and Ia(∞) = 0.

Proof. We are given
∫∞
−∞ e−t

2

dt =
√
π. Since e−t

2

is an even function, it follows

that Ih(∞) =
∫∞
0
e−t

2

dt = 1
2

∫∞
0
e−t

2

dt =
√
π
2 .

Next we compute Ia(∞). To show this is zero, it is enough to show that
Ia(R) is bounded by a function of R that goes to zero. By the triangle inequality

Ia =
∫ π/4
θ=0

e−(Re
iθ)2 · iReiθdθ is bounded by

Iabsa :=

∫ π/4

θ=0

|e−(Re
iθ)2 · iReiθ|dθ,
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the integral of the absolute value of the integrand. Compute each term individ-

ually: |e−(Reiθ)2 | = |e−R2e2iθ | = eRe(−(R2e2iθ)) = e−R
2 cos(2θ), and |iReiθ| = R.

Thus

Iabsa (R) =

∫ π/4

0

e−R
2 cos(2θ) ·Rdθ = R

∫ π/4

0

e−R
2 cos(2θ)dθ.

This is a real integral. Substituting

φ = π/2− 2θ

and using cos(π/2− φ) = sin(φ), we write

Iabsa (R) =
R

2

∫ π/2

0

e−R
2 sin(φ)dφ.

The intuition is to now observe that for small φ, we have e−R
2 sin(φ) ≈ e−R2φ,

and this integral is bounded by ≈ 1
R2

∫∞
0
e−x

2

, and that for φ approaching π/2

the value e−R
2φ goes to zero much faster than 1/R1 One way to make this

observation rigorous is to use that for 0 ≤ φ ≤ π/2, the graph of the sin
function is convex, so it is bounded below by the line from (0, 0) to (π2 , 1);
in other words, for φ ∈ [0, π/2] we have sin(φ) ≥ 2

πφ. This implies that our

integrand e−R
2 sin(φ) ≤ e−R2 2

πφ. We deduce

Iabsa (R) ≤ R

2

∫ π/2

0

e−R
2 2
πφ

2

dφ ≤

R

2

π

2R2

∫ 2R2

π

0

e−R
2

≤

π

4R

∫ ∞
0

e−R
2

=
π3/2

8R
.

Thus in the R → ∞ limit we have for c = π3/2

8 a constant that |Ia(R)| ≤
Iabsa (R) ≤ c/R, and so Ia(∞) = 0.

Since Ia(∞) = 0, the vanishing of the contour integral implies that Id =

−Ih = −
√
π
2 .

We now conclude by computing∫ ∞
0

cos(t2)− i
∫ ∞
0

sin(t2) =
Id
−ζ8

= Id · (−
√

2

2
+

√
2

2
i) =

√
π

2
− i
√
π

2
.

1alternatively, one can do a substitution u = sin(2θ), dt = du√
1−u2

.
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