
Math 185 Homework 2 Selected

solutions/sketches/hints.(Due Wednesday 2/5)

Do 4 out of 6 of the following groups of exercises. You are encouraged to try
more, but if you do please indicate which ones you do and do not want graded.

This homework set is taken from Stein and Shakarchi, Chapter I.4 (exercises
for all of chapter I). Exercise I.n denotes exercise n of chapter I.4

1. I.1, I.3 — for building intuition on complex numbers and algebra

I.1, a. z such that |z − z1| = |z − z2| for z1, z2 fixed: this is the set of
points in the plane equidistant from two points in the plane. If the points are
equal, this is all of C; otehrwise, it is the line which perpendicularly bisects the
segment z1, z2 (here the “bar” means segment, not conjugate).

b. 1/z = z̄. We assume z 6= 0 (else 1/z undefined). Then since 1/z = z̄
|z|2 ,

the condition is equivalent to |z|2 = 1, which gives the unit circle.

c. Re(z) = 3 : the vertical line with x-intercept 3.

d. Re(z) ≥ c, respectively, Re(z) ≥ c : the closed, resp., open, half-plane to
the right of the line with x-intercept c.

e. Re(az + b) > 0 for a, b ∈ C : if a = 0, this is everything or nothing
(depending on the real part of b). Otherwise, this is the plane obtained from
the (open) right half plane by subtracting b and dividing by a, which is bounded
by the line
fraciz − Re(b)a (this line has angle from the horizontal with argument −arg(a)

and distance |Re(b)|
|a| ).

f. |z| = Re(z) + 1. This is a parabola rotated by ninety degrees. Squaring:

both sides of
√
x2 + y2 = x+ 1 gives x2 + y2 = x2 + 2x+ 1, so y2 = 2x+ 1, or

x = y2−1
2 .

g. Im(z) = c : this is the horizontal line with y-intercept c.
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I.3: Set (in polar coordinates) z = reiα. We’re given zn = seiφ, giving s = rn

so r = n
√
s. And nα ≡ φ mod 2π, so α = φ

n + 2πk
n mod 2π, for k ∈ Z. Since

this only depends on k mod n, there are n possible values: z = n
√
s · ei·

φ+2πk
n

for k = 0, . . . , n− 1.
2. I.6 (also consider doing I.5, but don’t turn it in) — for building
intuition on the notion of connected and compact sets

(a) Check Cz open: let z0 ∈ Cz, so it is connected to z by a path γ. Since Ω
is open, there is a disk Dε(z0) contained in Ω for some ε. Each point z′ in Dε(z0)
is connected to z0 by the line segment L = ¯z0, z′ and forming a path consisting
of γ followed by L gives a path from z to z′. So Dε(z0) is in Cz, hence Cz open.
The rest is a straightforward series of arguments in concatenating and reversing
paths.

Note: two paths γ : [0, T ] → C and γ′ : [0, T ′] → C can be concate-
nated to a function γ t γ′ : [0, T + T ′]→ C defined by the formula

γ t γ′(t) =

{
γ(t) t < T

γ(t− T ) t ≥ T.
.

The result is a path if and only if γ(1) = γ′(0). Note: the concatenated
path is sometimes called γ′ ◦ γ by topologists – the order changes
because the paths compose backwards “like functions”.

b. Define Q + Qi (the set of “Gaussian rational number”) to be the set of
numbers of the form a+ bi | a, b ∈ Q. Since the rational numbers are countable
and the product of two countable sets is countable, Q + Qi is countable. The
idea of the proof now is as follows:

1. Each connected component of Ω contains a number in Q + Qi (in fact,
infinitely many such), because it is open and Q + Qi is dense.

2. Each number of the form Q + Qi is contained in at most one connected
component of Ω.

3. This implies that the set of connected components of Ω is “smaller than”
the set Q+Qi (it can be defined as the quotient of a subset of Q+Qi by
an equivalence relation), and is thus countable.

Following is a more rigorous proof.
Assume z ∈ Ω. The connected component Ωz is open, therefore contains all

points in some disk Dε(z), therefore contains all a+ bi | |a−Re(z)| < ε and |b−
Im(z)| < ε. Since any real interval contains a rational number, it is possible to
choose rational a, b which satisfy this property, so a+bi ∈ Dε(z) ⊂ Ωz, and thus
every connected component contains one of this countable set of points.

Since each a+ bi is contained in a unique connected componenent, enumer-
ating the set of values a + bi ∈ Q + Qi which are in Ω implies an enumeration
of connected components of Ω, possibly with repetition. Dropping repetitions,
we get an enumeration of connected components of Ω, hence it is countable.
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c. Assume K ⊂ C is a compact (equivalently, closed and bounded) set. Let
U = C \ K (open since K is closed). Assume K is bounded by R, i.e., has
no points of absolute value > R. Let A = C \ D̄R (the complement to a disk
is called an “annulus”; this is the complement to a closed disk, thus A is an
open annulus). Let C2R ⊂ A be the circle of radius 2R. Any two points on
C2R are connected by an arc, and any point z in A is connected to a the point
2R z
|z| ∈ C2R by a line segment in A. Thus A is path connected. This implies

(since A ⊂ U) that any two points in A are in the same connected component
of U . Therefore, any other connected component of U will have no points in A,
and thus be bunded by R.
3. I.8, I.10. Also look at I.11 (don’t turn it in). This is a slightly
more advanced set of problems for learning to work with the differential
operators ∂̄(F ) = ∂F

∂x+i∂F∂y and ∆ (the Laplacian) — we will not focus on
this formalism much, but it is useful for people interested in relating
complex analysis to other topics in analysis.

I.8 This problem can be done as an exercise in the multivariable calculus
chain rule, once you wrap your head around the potential confusions involved
in the unfortunate notation ∂z, ∂z̄. We will use the (better) notation ∂ for ∂

∂z

and ∂̄ for ∂
z̄ .

First, what are ∂ and ∂̄? Like ∂x, they are differential operators, which
are operators that accept as input a function f and output another function
made out of the derivatives of f . Also like ∂x, they are first-order differential
operators, in that they are a linear combination of first-order derivatives of f .
Unlike ∂x, however, ∂ and ∂̄ are only defined for complex-valued functions. The
importance of these operators in complex analysis is that ∂̄(f) = 0 if and only
if f is holomorphic (this is Cauchy-Riemann). On the other hand, ∂(f) is just
equal to f ′(= ∂f

∂x ). For antiholomorphic functions f (i.e., functions f(z) such

that the function g(z) := ¯f(z) is holomorphic), the roles of ∂ and ∂̄ are reversed.
Now for a given vector v = (v0, v1) ∈ R2, there is another useful first-order

differential operator called the directional derivative in the v direction (this one
defined on real functions), namely, ∂v := v0∂x + v1∂y. This operator is also
useful from the point of view of complex analysis: if w = a + bi is a specific
complex number and w := (a, b) is the corresponding real vector, then for a
holomorphic function f we have

∂w(f) (real vector derivative) = w · f ′.

The operator ∂̄ is sort of like the operator corresponding to the vector (1, i)
(and ∂ for (1,−i)), but this is not a real vector so it behaves very differently
(and this is crucial for the analysis of the complex numbers). Indeed, both ∂w(f)
and ∂w(f̄) will always give nonzero results for any non-constant holomorphic or
anti-holomorphic function f .

Moving on to the problem, observe that we have equality of operators

∂x = ∂ + ∂̄
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(i.e., they give the same answer on any, not necessarily holomorphic, function).
Similarly,

∂y = i(∂ − ∂̄).

It follows that if w is a complex number and w = (Re(w), Im(w)) is the corre-
sponding real two-vector, we have for any function f

∂wf = w∂f + w̄∂̄f.

Now the chain rule in multivariable calculus can be elegantly formulated as
follows. Suppose h = f ◦ g is a composition of two functions R2 → R2 and
x0 ∈ R2 is some point with y = g(x). Then

∂vh(x) = ∂(∂vg)f(y)

(here and elsewhere f and its derivatives are evaluated at the value y = g(x)).
In particular plugging in the formula for directional derivative above, we

have

∂xh = ∂∂xgf = ∂f · ∂xg + ∂̄f · ∂xg = ∂f · ∂g + ∂f · ∂̄g + ∂̄f · (∂g + ∂̄g),

which turns into
∂xh = ∂f∂g + ∂f∂̄g + ∂f∂ḡ + ∂f∂̄ḡ,

using the obvious fact that ∂̄g = ∂g (and vice versa). Similarly, ∂yh = ∂f ·
∂yg + ∂̄f · ∂yg, which expands to

∂yh = i
(
∂f · (∂g − ∂̄g) + ∂̄f · (∂̄g − ∂g)

)
.

Taking the combination of the terms above in the formulas 1
2∂xh ±

1
2i∂yh for

∂h, ∂̄h we see (after a bunch of cancellations) the required results. 1

I.10

∂∂̄ =
1

2
(∂x − i∂y) · 1

2
(∂x + i∂y) =

1

4

(
∂2
x + ∂2

y + i(∂x∂y − ∂y∂x)
)
.

Since ∂x∂y = ∂y∂x (i.e., applying these two operators in any order gives the
same answer for any continuously twice differentiable function), this simplifies
to 1

4∆, and ∂̄∂ similarly.

4. I.9. Treat this as a standard multivariable calculus problem with-
out worrying about limits, convergence, etc. Note that the Cauchy-
Riemann equations in the book split our complex-valued function
F (x, y) := f(x+ iy) into two functions u(x, y) + iv(x, y).

The first part is a straightforward multivariable calculus problem. Note that
the conditions on u, v can be formulated equivalently as a single condition on
f = u+ vi, namely, ∂θf = ir∂rf.

1apologies for the inevitable sign errors.
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For the second problem, compute (for u(z) = Re log(z), v(z) = Im log(z))
that ∂r log = 1

r + 0 · i, ∂θ log = i, so log satisfies the condition (in the domain
indicated).

Notice that log(z) is a valid antiderivative for 1/z in the domain indicated.
How do you reconcile this with the fact from class that 1/z has no antiderivative
because its complex integral around a loop is nonzero? Well, notice that it
cannot be extended to a holomorphic — or even to a continuous — function
for arg(z) = π, as the limits of log(z) from the two arg > π and arg < π sides
differs by a multiple of 2πi.

5. I.16 a-d, I.17 For working with power series.
None of the arguments in these problems will change if you replace an by

|an|, so real analysis will be enough here. The answers for 16 are 16a: 1, 16b:
0, 16c: 4, 16d: 27.

6. I.18 Working with power series and changing order of summation.
Say f(z) =

∑
n≥0 anz

n. Let z0 be within the disk of convergence, so |z0| < R.
Write

f(z0 + z) =
∑
n≥0

an(z0 + z)n =
∑
n≥0

∑
k≤n

(
n

k

)
(zk)(zn−k0 ).

We want to show that for z in some sufficiently small radius, we can change
order of summation. To do this, check absolute convergence. The sum of ab-
solute values is

∑
n≥0,k≤n |an|

(
n
k

)
|z|k|z0|n−k (sums of positive numbers do not

depend on order). This simplifies to
∑
n≥0 |an|(|z|+ |z0|)n. Since the radius of

convergence is the same for the series
∑
anz

n and
∑
|an|zn, we see that the

double sum of absolute values converges if |z| < R−|z0| (note that R−|z0| > 0).
Thus for z in a disk of positive radius order of summation doesn’t matter and∑

an(z0 + z)n =
∑

n≥0,k≤n

an

(
n

k

)
zn−k0 zn =

∑
k≥0

(∑
n≥k

an

(
n

k

)
zn−k0

)
zk,

which is a sum of the form
∑∞
k=0 bkz

k, hence a power series. Note that the free
coefficient is

∑
anz

n
0 = f(z0) and the z1 coefficient is

∑
nanz

n−1
0 = f ′(z). More

generally, you can see by induction (as one would expect from Taylor’s theorem)
that the zn coefficient is related to the nth derivative by bn = 1

n!f
(n)(z0).
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