
Math 185 Homework 1. Due Friday 1/31 (later

homeworks due Wednesday)

1. Define exp(iy) := cos(y) + i sin(y).
a. Prove, using trigonometry, that exp(iy+ iy′) = exp(iy) ·exp(iy′) for y, y′ ∈ R

two real numbers.

cos(y+y′)+i sin(y+y′) = cos2(y)−cos2(y′)+2i sin(y) sin(y′) = (cos(y)+i sin(y))·(cos(y′)+i sin(y′)).

b. Prove directly (using Taylor series for sin and cos) that

exp(iy) =
∞
∑

n=0

(iy)n

n!
,

where n! denotes the factorial of n. Hint: you may use the fact that an infinite
sum of complex numbers

∑

an converges if and only if
∑

Re(an) and
∑

Im(an)
both converge and if it converges,

∑

an =
∑

Re(an) + i
∑

Im(an). Now apply

this to an = (iy)n

n! .

Even terms are real and only contribute to teh real part, odd terms are
imaginary and only contribute to the imaginary part, so the sum is equal to
∑

k
(iy)2k

(2k)! + i
∑

k
(iy)2k+1

(2n+1)! . The real part is
∑ (−1)k

(2k)! y
2k and the imaginary part

is i ·∑k
(−1)k

(2n+1)!y
k

2. This and the following exercise are meant to help develop your thinking
about complex numbers. They do not follow the book: you will need to think
a bit on your own in order to solve these. For a positive real number r ∈ R,
define

Cr := {z | |z| = r}
to be the circle of radius r around 0.

Let G = {x + iy | x, y ∈ Z} (called the set of “Gaussian numbers”) be the
set of complex numbers with integer real and imaginary part.
a. Prove that the product z · z′ of two elements z, z′ ∈ G is again in G.

(a+ bi)(a′+ b′i) = aa′− bb′+(ab′+ a′b)i. If all coefficients are integers, then
both aa′ − bb′ and ab′ + a′b are integers as well.
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b. Prove that G ∩ C1 = {±1,±i}. In other words, the only elements
z ∈ G with |z| = 1 are the four distinct powers or i.

If |a+bi| = 1 then a2+b2 = 1. If a, b are integers, then a2, b2 are non-negative
integers, and the only way two non-negative integers add to 1 is if one is equal
to 1 and the other is zero. This means one of a, b is 0 and the other is ±1, giving
the four options ±1,±i.

From now on, we write U4 := {±1,±i} (here U4 stands for “fourth roots of
unity”).

c. Prove that if |z| = r then |uz| = r for u ∈ U4 and |z̄| = r. Let Cr ⊂ C

be the circle of radius r, given by Cr = {z ∈ C | |z| = r}. Show that
|Cr ∩G| (the set of Gaussian integers of absolute value r) is finite and
has number of elements divisible by 41. (Hint: the set {±1,±i} has
four elements).

Note that z = a+ bi is in Cr ∩ G if and only if |z| = r and a, b ∈ Z. There
are a finite number of such elements, since if z ∈ Cr then |a|, |b| ≤ r, and there
are finitely many options for integers in this range. Clearly z̄ = a− bi satisfies
these properties. If u ∈ U4, then |u| = 1 so zu = |z||u| = |z| · 1 = r, and zu ∈≫
(is Gaussian) since Gaussian numbers are closed under product, so zu ∈ Cr ∩G

as well.
Say an element z is in the first quadrant if its argument is in [0, π/2) (equiv-

alently, if x ≥ 0 and y > 0), in the second quadrant if in [π/2, π), and similarly
for the third and fourth quadrants. Then observe that there is a unique element
u0 of U in the same quadrant as z (1 is in the first quadrant, i is in the second
quadrant, −1 is in the third quadrant and −1 is in the fourth quadrant), and so
z ∈ Cr∩ ≫ is in the nth quadrant if and only if z · u−1

0 is in the first quadrant.
So each quadrant of Cr∩ ≫ has the same number of elements, and the order of
Cr∩ ≫ is divisible by 4.
d. Show that if (for two numbers r, s ∈ R), the circles Cr and Cs

both contain a Gaussian number then the circle Crs also contains
a Gaussian number. Deduce that if m,n are integers which can be
expressed as the sum of two squares then mn can be as well (hint:
show that m is the sum of two squares if and only if C√

m contains a
Gaussian number).

Assume there is z ∈ Cr∩ ≫, and z′ ∈ Cs∩ ≫ . Then since Gaussian numebrs
are closed under product and absolute values multiply when taking product, we
have the Gaussian number zz′ ∈ Crs∩ ≫ . Note that there is a Gaussian
numbers z = a + bi in C√

n if and only if
√
n =

√
a2 + b2 for a pair of integers

a, b, i.e. if and only if n is a sum of squares. We’ve just shown that if n,m are
sums of squares (i.e. C√

m, C√
n both contain a Gaussian number) then so is

nm.
e. Find all Gaussian numbers of length

√
5, i.e. all numbers in C√

5 ∩
G. Sketch them (or draw them on graph paper.) Connect pairs of
numbers which are related by multiplication by ±i. (This should

1if Cr ∩ G is empty, it has 0 elemnts, which is divisible by 4.
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split your numbers into “squares”).
See diagram:
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3. Now we do the same thing for the ring of Eisenstein integers.

Define the set of Eisenstein integers E to be the set of integers E :=

{a+b
√
3i

2 | a ≡ b mod 2. So for example, −5
√
3i ∈ E and 3 −

√
3i ∈ E bue

1 +
√
3
2 is not in E.

a. Draw a (sketch) of the Eisenstein integer lattice. (You should get
something with hezagonal symmetry!) Show that the set of Eisenstein
integers is closed under multiplication, so if z, z′ ∈ E, then so is z · z′.

The lattice looks like the nodes in this figure:

b b

bb

b

b b

b

b

bb

b

bbb

b

b

b

b

1 2−1−2

Note that the condition z = x+y
√
3i for x, y ∈ Q is equivalent to z = a+bζ6,

for ζ6 = 1+
√
3i

2 . The condition that x, y ∈ Z

2 (integers or half-integgers) with
x ≡ y mod 1 is equivalent to the condition a, b ∈ Z above (why?). Thus the
Eisenstein integers are the set of complex numbers of the form a+bζ. If z = a+bζ
and z′ = a′+b′ζ then, using ζ2 = ζ−1 we have zz′ = aa′+(ab′+a′b)ζ+bb′ζ2 =
aa′ − bb′ + (ab′ + a′b+ bb′)ζ.

Alternative proof: if z = x+y
√
3i

2 , z′ = x′ + y′
√
3i2 and x ≡ y, x′ ≡ y′

mod 2, we get zz′ = 1
4 (xx

′ − 3yy′ +
√
−3(xy′ + x′y)) and checking the four
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possibilities for the two mod two residues x ≡ x′, y ≡ y′, we see the number in
the denominator must be ≡ 0 mod 2.
b. Let ζ := exp(2πi6 ), also known as “the primitive sixth root of unity”.
(The Greek letter ζ is pronounced “zeta” and written “\zeta” in
LATEX). Show that ζ ∈ E (in fact, you can observe that E = {a + bζ |
a, b ∈ Z}). Show that ζ6 = 1, that −ζ = ζ4 and ζ̄ = ζ−1.

This can be done as a computation with complex numbers, or use trigonom-
etry to see ζ = exp(πi/3) so ζ6 = exp(2πi) = 1 and ζ4 = ζ · exp(πi) = −ζ.
And

ζ5 = exp(
5πi

6
) = exp(−πi

6
) = ζ−1 =

ζ̄

|ζ| =
ζ̄

1
.

c. Show that C1 ∩ E = {1, ζ, ζ2, ζ3, ζ4, ζ5} is the set of the six distinct
powers of ζ. (The notation Cr is, as before, the circle of radius r.)

Since |x+iy
√
3

2 | =
√

x2+3y2

4 , we see that the only possibilities for integer

|x|, |y| for which this is ≤ 1 are |x| ≤ 2, |y| ≤ 1. The only possibilities with
|x| ≤ 1, |y| ≤ 2 and with the correct parity are (|x|, |y|) = (0, 0), (1, 1), (2, 0), and
of these (|x|, |y|) ∈ {(2, 0), (1, 1)} correspond to the correct parity. Putting in

all possible signs we get (x, y) ∈ (±1,±1), which corresponds to z = ±1±i·
√
3

2 =
{σ, σ̄,−σ,−σ̄, and by the previous part this set is {σ, σ2, σ5, σ4}. And the option
(x, y) = (±2, 0) corresponds to z = ±1 = {ζ0, ζ3}. Thus ζ0, . . . , ζ5 give the six
distinct Eisenstein numbers of absolute value 1. And since ζ5 = 1, we have
ζk = ζ(k mod 6) ∈ {ζ0, . . . , ζ6} for any integer k.

From now on, we write U6 := {ζk, 0 ≤ k ≤ 5} for the set of unit Eisenstein
numbers (here U6 stands for “sixth roots of unity”).

d. Show that if z ∈ Cr (equivalently, |z| = r) then ζnz and z̄ are also
in Cr. Deduce that the set of Eisenstein integers in the circle Cr has
number of elements divisible by 6.

Say z ∈ Cr. Then |z| = r, so |zζn| = |z||ζn| = |z| · 1n = r, so zζn ∈ Cr.
And |z̄| = r as well, so z̄ ∈ Cr. If z is an Eisenstein number then ζnz is also
an Eisenstein number, as is ζ̄ . Now let Ar be the set of Eisenstein numbers

of radius r. It is finite since |a+b
√
3i

2 | = r implies |a|, |b| ≤ 2r, and there are
finitely many options for both a and b. Let Ak

r be the set of elements of Ar

with argument in the interval [kπ, (k + 1)π]. Then A0
r , . . . , A

5
r split up the set

Ar into six “arcs”. If z ∈ Ak
r then ζ−kz ∈ A0

r and conversely for any z ∈ A0
r, we

have ζkz ∈ Ak
r . Thus each of A0

r, A
1
r , . . . , A

5
r has the same magnitude as A0

r, and
|Ar| = 6|A0|. (Note: often, |Ar| will be divisible by twelve, since for each z ∈ Ar

we can construct the six elements ζnz and six other elements ζnz̄. However, we
are not guaranteed that these 12 elements are distinct! For example, we could
have z̄ = ζz or z̄ = z, etc. For a slightly more challenging exercise, prove that
the number of points in Ar has number of points divisible by 12 if and only if
r is not an integer or an integer times

√
3.

e. Find and draw twelve elements in C√
7 ∩E (these are in fact all the
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elements of E of length
√
7). Connect by a segment pairs of elements

related by multiplication by ζ. (You should get two hexagons each
consisting of groups of U6-multiples!) See picture:
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4. Fix a positive integer n. Let za,b ∈ C be an array of numbers indexed by
pairs of integers a, b with 0 ≤ a ≤ n and 0 ≤ b ≤ n (you can think of this as an
n + 1 by n + 1 square matrix, but thinking of za,b as being in the point (a, b)
of the plane rather than (b, a) as would be the case for matrix notation). Let
ha,b := za+1,b − za,b for 0 ≤ a ≤ n − 1, 0 ≤ b ≤ n be the matrix of horizontal
differences (notice that za+1,b only makes sense for a ≤ n − 1). Similarly, let
va,b := za,b+1 − za,b for 0 ≤ a ≤ n and 0 ≤ b ≤ n − 1 be the matrix of vertical
differences.
a. Show that for any pair of indices a, b ∈ {0, . . . , n− 1} we have

va,b − va+1,b = ha,b − ha,b+1 (1)

It is helpful to think of the difference va,b as corresponding to the
vertical edge between the points (a, b) and (a, b + 1) and similarly for
ha,b on a horizontal edge. This question is asking you to prove an
identity about the numbers written on the edges of the little square
connecting the four vertices (a, b), (a+ 1, b), (a+ 1, b+ 1) and (a, b+ 1).

The left hand side is va,b − va+1,b = za,b+1 − za,b − za+1,b+1 + za+1,b. The
RHS is za+1,b − za,b − za+1,b+1 − za,b+1, and the two are visibly equal.
b. Conversely, show that if we have collections of numbers va,b (for
a ≤ n, b ≤ n − 1) and ha,b (for a ≤ n − 1, b ≤ n) as above which satisfy
equation (1) then there exists a collection of za,b with ha,b = za+1,b−za,b
and va,b = za,b+1 − za,b, and that any two possibilities for the numbers
za,b differ from each other by a constant.

Hint: Assume that z0,0 is some constant number c ∈ C. By considering the
differences between consecutive pairs in the path z0,0 → z1,0 → · · · → za,0 →
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za,1 → za,2 → · · · → za,b, write a expression for za,b in terms of vj,k and hj,k.
Now check that hj,k and vj,k are indeed the differences.

We will do a slightly different induction from the one described in the hint.
Using the hint makes the induction argument simpler, but this one is more
symmetric with respect to switching “vertical” and “horizontal” directions.

First, assume we are given some hj,k, vj,k and zj,k is a collection of numbers
satisfying hj,k = zj+1,k−zj,k and vj,k = zj,k+1−zj,k. Then adding some constant
c ∈ C to each zj,k will not change the differences. Other than adding a constant,
there can be at most one set of values zj,k that works: indeed, once we know
c = z0,0 then we know z1,0 = z0,0 + h0,0 and z0,1 = z0,0 + v0,0. Now assume, by
induction, that for some fixed t ≤ 2n, we know each zj,k for j + k ≤ t (with the
standing assumption 0 ≤ j ≤ n, 0 ≤ k ≤ n). Then we know zj+1,k = zj,k + hj,k

and zj,k+1 = zj,k + vj,k, and (by induction starting with the base case t = 1)
this uniquely determines each value with j + k = t+ 1.

This shows uniqueness up to constant, but we still need to show that at
least one possibility for zj,k exists given that hj,k and vj,k satisfy property (1).
To do this, it’s enough to inductively construct zj,k for j + k = t so that it
satisfies hj,k = zj+1,k − zj,k and vj,k = zj,k+1 − zj,k for j + k < t − 1. Assume
(by the same kind of induction as above) that we have constructed zj,k for
j+k ≤ t− 1 that give the right hj,k and vj,k for j+k < t− 2. Now for j+k = t
satisfying j 6= 0 (so k < t) define zj,k = zj−1,k + hj−1,k and for j + k = t
satisfying k 6= 0, define z′j,k = zj,k−1 + vj,k−1. Now (applying the induction
hypothesis) we have zj,k = zj−1,k +hj−1,k = (zj−1,k−1 + vj−1,k−1) +hj−1,k and
z′j,k = zj,k−1+vj,k−1 = zj−1,k−1+hj−1,k−1+vj,k−1. Since the h’s and v’s satisfy
(1) we deduce z′j,k − zj−1,k−1 = zj,k − zj−1,k−1 and so zj,k = z′j,k. Since zj,k was
defined to have the right horizontal differences for hj,k (with j + k = t− 1) and
vj,k was defined to have the right verticacl differences vj,k (for j + k = t − 1),
we see that at the t’th inductive step, the zj,k have the correct differences for
all adjacent pairs with sum of indices ≤ t. At the 2nth step of the induction, we
will have thus constructed the values zj,k (with 0 ≤ j ≤ n, 0 ≤ k ≤ n) with the
desired properties.
c. Let λh, λv ∈ C be two arbitrary complex numbers. Define arrays

ha,b := λh · (a+ bi)

and
va,b := λv · (a+ bi).

Show that equation (1) is satisfied (so these particular choices ha,b, va,b
are indeed differences) of and only if λv = i · λh.

We check (1): We want ha−1,b−ha−1,b−1 = va,b−1−va−1,b−1. Putting in the
given values of ha,b and va,b we get the left hand side equal to λh ((a− 1) + bi− (a− 1 + (b − 1)i)) =
λh · i and teh right hand side is λv (a+ (b − 1)i− (a− 1 + (b − 1)i)) = λv, so
the condition holds if and only if λv = iλh.

Notice the similarity between the condition λv = i · λh and complex differ-
entiability. A continuous version of this type of argument (with za,b := f(a+bi

n
),
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and with n approaching ∞) is useful for proving integration and differentiation
formulas for holomorphic functions.
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