
Math 185 Homework 1. Due Friday 1/31 (later

homeworks due Wednesday)

1. Define exp(iy) := cos(y) + i sin(y).
a. Prove, using trigonometry, that exp(iy+ iy′) = exp(iy) ·exp(iy′) for y, y′ ∈ R
two real numbers.
b. Prove directly (using Taylor series for sin and cos) that

exp(iy) =

∞∑
n=0

(iy)n

n!
,

where n! denotes the factorial of n. Hint: you may use the fact that an infinite
sum of complex numbers

∑
an converges if and only if

∑
Re(an) and

∑
Im(an)

both converge and if it converges,
∑
an =

∑
Re(an) + i

∑
Im(an). Now apply

this to an = (iy)n

n! .

2. This and the following exercise are meant to help develop your thinking
about complex numbers. They do not follow the book: you will need to think
a bit on your own in order to solve these. For a positive real number r ∈ R,
define

Cr := {z | |z| = r}

to be the circle of radius r around 0.
Let G = {x + iy | x, y ∈ Z} (called the set of “Gaussian numbers”) be the

set of complex numbers with integer real and imaginary part.
a. Prove that the product z · z′ of two elements z, z′ ∈ G is again in G.
b. Prove that G∩C1 = {±1,±i}. In other words, the only elements z ∈ G with
|z| = 1 are the four distinct powers or i.

From now on, we write U4 := {±1,±i} (here U4 stands for “fourth roots of
unity”).

c. Prove that if |z| = r then |uz| = r for u ∈ U4 and |z̄| = r. Let Cr ⊂ C be the
circle of radius r, given by Cr = {z ∈ C | |z| = r}. Show that |Cr ∩G| (the set
of Gaussian integers of absolute value r) is finite and has number of elements
divisible by 41. (Hint: the set {±1,±i} has four elements).

1if Cr ∩ G is empty, it has 0 elemnts, which is divisible by 4.
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d. Show that if (for two numbers r, s ∈ R), the circles Cr and Cs both contain a
Gaussian number then the circle Crs also contains a Gaussian number. Deduce
that if m,n are integers which can be expressed as the sum of two squares then
mn can be as well (hint: show that m is the sum of two squares if and only if
C√m contains a Gaussian number).

e. Find all Gaussian numbers of length
√

5, i.e. all numbers in C√5 ∩G. Sketch
them (or draw them on graph paper.) Connect pairs of numbers which are re-
lated by multiplication by ±i. (This should split your numbers into “squares”).

3. Now we do the same thing for the ring of Eisenstein integers. Define the set

of Eisenstein integers E to be the set of integers E := {a+b
√
3i

2 | a ≡ b mod 2.

So for example, −5
√

3i ∈ E and 3−
√

3i ∈ E bue 1 +
√
3
2 is not in E.

a. Draw a (sketch) of the Eisenstein integer lattice. (You should get something
with hezagonal symmetry!) Show that the set of Eisenstein integers is closed
under multiplication, so if z, z′ ∈ E, then so is z · z′.
b. Let ζ := exp( 2πi

6 ), also known as “the primitive sixth root of unity”. (The
Greek letter ζ is pronounced “zeta” and written “\zeta” in LATEX). Show that
ζ ∈ E (in fact, you can observe that E = {a+ bζ | a, b ∈ Z}). Show that ζ6 = 1,
that −ζ = ζ4 and ζ̄ = ζ−1.
c. Show that C1 ∩ E = {1, ζ, ζ2, ζ3, ζ4, ζ5} is the set of the six distinct powers
of ζ. (The notation Cr is, as before, the circle of radius r.)

From now on, we write U6 := {ζk, 0 ≤ k ≤ 5} for the set of unit Eisenstein
numbers (here U6 stands for “sixth roots of unity”).

d. Show that if z ∈ Cr (equivalently, |z| = r) then ζnz and z̄ are also in
Cr. Deduce that the set of Eisenstein integers in the circle Cr has number of
elements divisible by 6.
e. Find and draw twelve elements in C√7 ∩ E (these are in fact all the ele-

ments of E of length
√

7). Connect by a segment pairs of elements related by
multiplication by ζ. (You should get two hexagons each consisting of groups of
U6-multiples!)

4. Fix a positive integer n. Let za,b ∈ C be an array of numbers indexed by
pairs of integers a, b with 0 ≤ a ≤ n and 0 ≤ b ≤ n (you can think of this as an
n + 1 by n + 1 square matrix, but thinking of za,b as being in the point (a, b)
of the plane rather than (b, a) as would be the case for matrix notation). Let
ha,b := za+1,b − za,b for 0 ≤ a ≤ n − 1, 0 ≤ b ≤ n be the matrix of horizontal
differences (notice that za+1,b only makes sense for a ≤ n − 1). Similarly, let
va,b := za,b+1 − za,b for 0 ≤ a ≤ n and 0 ≤ b ≤ n − 1 be the matrix of vertical
differences.
a. Show that for any pair of indices a, b ∈ {0, . . . , n− 1} we have

va,b − va+1,b = ha,b − ha,b+1 (1)
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It is helpful to think of the difference va,b as corresponding to the vertical
edge between the points (a, b) and (a, b+1) and similarly for ha,b on a horizontal
edge. This question is asking you to prove an identity about the numbers written
on the edges of the little square connecting the four vertices (a, b), (a+1, b), (a+
1, b+ 1) and (a, b+ 1).
b. Conversely, show that if we have collections of numbers va,b (for a ≤ n, b ≤
n− 1) and ha,b (for a ≤ n− 1, b ≤ n) as above which satisfy equation (1) then
there exists a collection of za,b with ha,b = za+1,b− za,b and va,b = za,b+1− za,b,
and that any two possibilities for the numbers za,b differ from each other by a
constant.

Hint: Assume that z0,0 is some constant number c ∈ C. By considering the
differences between consecutive pairs in the path z0,0 → z1,0 → · · · → za,0 →
za,1 → za,2 → · · · → za,b, write a expression for za,b in terms of vj,k and hj,k.
Now check that hj,k and vj,k are indeed the differences.
c. Let λh, λv ∈ C be two arbitrary complex numbers. Define arrays

ha,b := λh · (a+ bi)

and
va,b := λv · (a+ bi).

Show that equation (1) is satisfied (so these particular choices ha,b, va,b are
indeed differences) of and only if λv = i · λh.

Notice the similarity between the condition λv = i · λh and complex differ-
entiability. A continuous version of this type of argument (with za,b := f(a+bin ),
and with n approaching ∞) is useful for proving integration and differentiation
formulas for holomorphic functions.
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