Math 185 Practice midterm 1.

March 10, 2020

- 1. Let $f(z) = z/(z-4)^2 + 1/(z-2i)^2$.
- (a) Find the radius of convergence of this power series.
- (b) Find the path integral of f(z) along a circle of radius 1, 3, 5.
- (c) What is the largest radius r such that f has an antiderivative on the open disk \tilde{D}_r of radius r around the origin.
- **2.** Suppose that f(z) is a function which has a singularity at z=i and at z=-i, both of which are simple poles with residue 1. Suppose that f(z)= $\int_{-5}^{5} f(x)dx = 2.$
- (a) Let γ_+ be the contour $\gamma_+(t) = 5 \exp(it)$ for $t \in [0, \pi]$ be the upper halfarc and let $\gamma_{-}(t) = -5 \exp(it)$ for $t \in [0, \pi]$ be the lower half-arc of the circle of radius 5. Compute $\int_{\gamma_{+}} f(z)$ and $\int_{\gamma_{-}} f(z)$.
- **3.** You are given that f is a function with a single singularity, which is a pole. You are also given that γ is a closed curve in \mathbb{C} such that $f(\gamma(t)) = (\dot{\gamma}(t))^{-1}$ for all $t \in [0,T]$. Show that the residue of f is purely imaginary.²
 - 4. Compute residues of the following functions, along the following contours.

 - (a) $\int_{C_2} \frac{\sin(z)}{z-i}$ (b) $\int_{C_2} \frac{e^z}{z^2}$ (c) $\int_{C_{2\pi}} \frac{1}{\cos(z)}$ (d) $\int_{C_{2\pi}} (z^2)$

¹Originally it was assumed f is an even function... This is actually not necessary, and in fact not possible, since residues of an even function at $\pm z$ will be opposite! ²this question originally had a typo: f' instead of f.