Math 185 Practice midterm 1.

March 4, 2020

1. Let $f(z)=z /(z-4)^{2}+1 /(z-2 i)^{2}$.
(a) Find the radius of convergence of this power series.
(b) Find the path integral of $f(z)$ along a circle of radius $1,3,5$.
(c) What is the largest radius r such that f has an antiderivative on the open disk \grave{D}_{r} of radius r around the origin.
2. Suppose that $f(z)$ is a function which has a singularity at $z=i$ and at $z=-i$, both of which are simple poles with residue 1 . Suppose that $f(z)=$ $\int_{-5}^{5} f(x) d x=2$, and f is an even function.
(a) Let γ_{+}be the contour $\gamma_{+}(t)=5 \exp (i t)$ for $t \in[0, \pi]$ be the upper halfarc and let $\gamma_{-}(t)=-5 \exp (i t)$ for $t \in[0, \pi]$ be the lower half-arc of the circle of radius 5. Compute $\int_{\gamma_{+}} f(z)$ and $\int_{\gamma_{-}} f(z)$.
3. You are given that f is a function with a single singularity, which is a pole. You are also given that γ is a closed curve in \mathbb{C} such that $f^{\prime}(\gamma(t))=(\dot{\gamma}(t))^{-1}$ for all $t \in[0, T]$. Show that the residue of f is purely imaginary.
4. Compute residues of the following functions, along the following contours.
(a) $\int_{C_{2}} \frac{\sin (z)}{z-i}$
(b) $\int_{C_{2}} \frac{e^{z}}{z^{2}}$
(c) $\int_{C_{2 \pi}} \frac{1}{\cos (z)}$
(d) $\int_{C_{2 \pi}}\left(z^{2}\right)$
