Math 185 Practice problems for final

May 7, 2020

1 New material

1. (a) Construct a conformal equivalence between the strip $\{x+i y \mid 0<x+y<$ π and the unit disk \mathbb{D}.
(b) Construct a conformal equivalence between the "angle" $\{z \in \mathbb{C} \mid z \neq$ $0,0<\arg (z)<\pi / 3\}$ and the unit disk $\mathbb{D} \subset \mathbb{C}$.
2. Suppose that $f: S^{2} \rightarrow S^{2}$ is a holomorphic (conformal except at finitely many points) function from the Riemann sphere to itself. Let $F: \mathbb{C}-\rightarrow \mathbb{C}$ be the (partially defined) corresponding meromorphic function, given (where defined) by $F(z)=P \circ f \circ P_{N}^{-1}(z)$. Suppose that f is conformal at every preimage point of N. Show that the meromorphic function $F(z)$ is given by the formula $f(z)=a z+b+\sum_{k=1}^{n} \frac{a_{n}}{z-z_{k}}$, for $a, b, a_{1}, \ldots, a_{n}$ complex constants and z_{1}, \ldots, z_{n} distinct complex numbers.
3. Define the function $f: \mathbb{C} \rightarrow \mathbb{R}^{3}$ given by

$$
f(x+i y)=(\cos x, \sin x, y)
$$

Let $Y=\operatorname{Im} f \subset \mathbb{R}^{3}$. the image of f, be the vertical unit cylinder.
(a) Show that f is a conformal map.
(b) Let $\mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$ be the set of complex numbers except the origin. Find a (bijective) conformal mapping $g: \mathbb{C}^{*} \rightarrow Y$.

2 Old material

4. Let Ω be a simple closed curve and $p \in \operatorname{Int} \Omega$ a point in its interior. Let \mathbb{D} be the unit disk.
(a) Show that there exists a conformal equivalence (i.e., mapping) from $\Omega \backslash\{p\}$ to $\mathbb{D} \backslash\{0\}$.
(b) Show that there does not exist a conformal equivalence from \mathbb{C}^{*} to $\mathbb{D} \backslash\{0\}$.
(c) Using problem 3, deduce that there does not exist a conformal equivalence from the cylinder Y to $\mathbb{D} \backslash\{0\}$.

True or false. If true give an argument. If false give a counterexample.
(a) If f and g have a pole at z_{0} then $f+g$ has a pole at z_{0}.
(b) If f and g have a pole at z_{0} and both have nonzero residues the $f g$ has a pole at z_{0} with a nonzero residue. (c) If f has an essential singularity at $z=0$ and g has a pole of finite order at $z=0$ then $f+g$ has an essential singularity at $z=0$. (d) If $f(z)$ has a pole of order m at $z=0$ then $f\left(z^{2}\right)$ has a pole of order $2 m$.
5. Problem 5. Line integrals (a) Compute $\int_{C} x d z$ where C is the unit square.
(b) Compute $\int_{C} \frac{1}{|z|} d z$, where C is the unit circle.
(c) Compute $\int_{C} \frac{z^{2}-1}{z^{z}+1} d z$, where C is the circle of radius 2 .
(d) Compute $\int_{C} \frac{e^{z}}{z^{2}} d z$, where C is the circle $|z|=1$.
6. Suppose f is entire and $|f(z)|>1$ for all z. Show that f is constant.

