
Math 185 Topics

March 7, 2020

1 Complex numbers and functions (I.1, Chap.
1 of Gamelin)

Basic question: how to do algebra and calculus with complex numbers?

• Question: How to multiply two complex numbers in polar form,

r1 exp(iθ1) · r2 exp(iθ2) = r1r2 exp (i(θ1 + θ2 mod 2π))

• Question: How to define exp, sin, cos for complex numbers. Properties of
exp.

• Question: How to take the limit limz→z0 f(z) of a complex function.

• What is the complex logarithm ln(z)? Where is it defined? Why is it not
the only solution to the equation exp(a + bi) = z and what are all the
solutions in terms of polar coordinates (r, θ) for z?

2 Complex derivatives and holomorphicity ba-
sics (I.2)

Basic question: what are holomorphic functions? What are some examples?

• Question: What is a complex derivative? When does it exist?

• Cauchy-Riemann Theorem: holomorphicity implies existence of (con-
tinuous) partial derivatives. Conversely, existence of (continuous) partial
derivatives does not imply holomorphicity. We need to impose the Cauchy-
Riemann relation, ∂yf = i∂xf. Think: “rate of change in the i direction
is i times the rate of change in the 1 direction”.

• Analytic functions are holomorphic. Intuition of proof: the complex
derivative of any partial sum

∑N
k=0 ak(z− z0)k is equal to

∑N
k=1 kakz

k−1.

In particular,
∑N
k=0 ak(z−z0)k are holomorphic functions and their deriva-

tives converge to
∑∞
k=1 jakz

k−1 within the radius of convergence. To prove
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the the theorem, we need to be a little more careful with convergence
(specifically: control the error terms that show up in the computation of
the derivative), but you don’t need to remember how to do this.

3 Path integrals and antiderivatives (I.3, II.1,
II.2)

Questions.

• What is the definition of
∫
γ
f(z)dz for γ a path from a ∈ C to b ∈ C?

• What is
∫
γ
f(z)dz when f has a holomorphic antiderivative F? (Answer:

it is F (b)−F (a), this is the complex chain rule applied to the composition
F ◦ γ.)

• Does this hold if we don’t assume f has an antiderivative in Ω? (Answer:
not necessarily.)

Statements.

• The functions zn for any integer n 6= −1 have antiderivatives, so they are
easy to integrate along a path. In particular, their integral along a loop
equal to zero. (Why?)

• The fact
∮
C1

1
z = 2πi implies that 1

z cannot have an antiderivative on any

domain that contains the circle C1. (Why?)

• Key theorem: Cauchy’s Theorem: if γ is a simple closed loop and f is
holomorphic on (a domain containing) γ and its interior, then

∮
γ
f(z)dz =

0. Derived from the (extremely similar) Goursat’s Theorem, which is
Cauchy’s theorem for a simple polygon (rectangle in class; triangle in
book. You can use any version.)

• Corollaries of Cauchy:

1. Antiderivative theorem: a function which is holomorphic
on the interior of a simple closed loop has a holomorphic
antiderivative in the interior of this loop.

2. If f is holomorphic on a simple closed loop γ but
∮
γ
f(z)dz 6= 0 then f

must not be holomorphic (e.g. have a pole) somewhere in the interior
of γ.

4 Cauchy integral formula and Analyticity (II.4,
Morera from II.5)

Questions.
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• How can we turn the seeming bug in complex analysis, that the change of
variables formula fails for loops, into a feature?

• How can we express a value or a derivative of f(z0) in terms of values of
f “far away” from z0?

• When does the converse of “holomorphic =⇒ analytic” hold? (Answer:
always, because of Cauchy integral magic.)

Statements.

• Cauchy Integral formula If f is holomorphic on (a domain containing)
γ and the interior of γ then

f(z0) =
1

2πi

∮
γ

f(z)

z − z0
dz

for z0 is in the interior of γ (but not on γ itself or else the path integral is
undefined!).

• Generalization More generally, we can compute any derivative f (n)(z0)
in terms of a path integral using the following formula:

f (n)(z0)

n!
=

1

2πi

∮
γ

f(z)

(z − z0)n+1
dz.

• Liouville: A consequence of Cauchy for first derivatives: a function
which is bounded and entire (everywhere holomorphic) must be constant.
Corollary: fundamental theorem of arithmetic (every polynomial with
coefficients in C has a root in C).

• Holomorphic functions are analytic. Notice that f(n)(z0)
n! is the nth

Taylor coefficient of f around z0. A real infinitely differentiable function
has a Taylor series, but might not be equal to the analytic function defined
by this series. A holomorphic function, however, satisfies f(z) =

∑
an(z−

z0)n for an = f(n)(z0)
n! within a nonzero radius of convergence. We show this

by expanding the term 1
(z−z0)n+1 in the Cauchy theorem as a geometric

series. This is one of the important ways in which complex analysis is
“magic”.

• Morera A consequence of analyticity is Morera’s theorem: a continuous
function (on a domain Ω) whose integral over any simple closed loop is 0
must be holomorphic. Note that the converse is not necessarily true, since
Ω might not be simply connected (it might have a “hole”). But if Ω is, for
example, the interior of a simple closed curve, then the converse is true
by Cauchy’s theorem.
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5 Poles and residues (III.1, III.2)

If f is defined on a domain Ω that contains all the points in some disk around z0
except for z0 itself (sometimes called a punctured neighborhood of z0), then we
say f has an (at worst) isolated singularity at z0. The singularity removable if
f can be extended to z0 holomorphically (in which case we say f is not singular
at z0). It is a pole if f is singular at z0 but f−1 (here understood as 1

f(z) ) is

not (in which case f−1 must have a zero at z0). An isolated singularity which
is neither removable nor a pole is called an essential singularity.

Statements.

• A function f which is holomorphic at z0 has a zero of order n if f(z) =
(z − z0)nf̃(z) for f̃ a function which is holomorphic and nonzero (a.k.a.
invertible) at z0. (If f(z0) 6= 0 we say f has a “zero of order zero” at z0.)

• A function f with a singularity at z0 has a pole of order n if f−1 has a
zero of order n.

• If f has a zero of order n it has a Taylor series f(z) = an(z − z0)n +
O(z − z0)n+1. If f has a pole of order n then f(z) has a Laurent series,

f(z) = a−n(z − z0)−n + O(z − z0)−(n−1). The finite sum
∑−1
k=−n akz

k

is called the singular part, also known as the principal part. And the
(holomorphic at z0) infinite sum

∑∞
k=0 akz

k is called the holomorphic
part.

• The most important term in the principal part is the residue, Resz0(f) =
a−1 (for f =

∑
ak(z − z0)k the Laurent expansion).

• A key formula: if f has a simple pole, i.e. a pole of order 1, at z0 then
f(z) = a−1(z−z0)−1+O(1) and f−1 = a−11 (z−z0)1+O(z−z0)2. Therefore
if we write g(z) = f−1(z) and it has a power series expansion g(z) =∑
bk(z− z0)k, then a−1 = b−11 (in particular, it is never 0). Alternatively:

If f has a simple pole at z0, then

Resz0f =

(
1

f

)′
(z0).

• The residue formula Assume f is defined on (a domain Ω that contains)
γ and also on the interior of γ except for at finitely many points z1, . . . , zn,
all of which are poles of f . Then

∮
γ
f(z)dz = 2πi ·(

∑n
k=1 Reszkf(z)) . This

formula is obvious from the Laurent series expression if there is one pole
z1, and if there are multiple poles can be obtained either as a keyhole
contour argument or by observing that the sum of the singular parts of f
at the zk exactly cancels the singularities of f .
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6 Toy contours, keyholes and proving an R→∞
integral goes to 0 (II.3 and other places).

• It is sometimes useful to “split” a contour into smaller contours, using
cancellation of the path integral over a segment and the same segment
going in the opposite direction. We used this, for example, in our proof
of Goursat’s theorem. Sometimes it is useful instead to take a pair of
segments ε apart which almost cancel, and to observe that they cancel in
the limit (this is the keyhole argument).

• More generally, many integrals can be reduced to a path integral by taking
a limit of contours depending on a parameter R, taking this parameter to
∞, and noticing that certain contour integrals go to zero. Useful facts:

1. For n ≥ 2, the contour integral of a function of the form 1
zn (and

more generally, the inverse to a polynomial of degree n) will go to 0
over any arc of a circle of radius R→∞.

2. As y →∞, the function e−x+iy0 goes to 0 exponentially while |ex+iy0 |
goes to ∞ exponentially in the x→∞ limit.

3. Both | sin(ex0+iy)| and | cos(ex0+iy)| go to ∞ exponentially in the
y → ±∞ limit (since they have both a e−y+ix0 and an ey−ix0 term).
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