Math 185 Topics

March 7, 2020

1 Complex numbers and functions (I.1, Chap.
1 of Gamelin)

Basic question: how to do algebra and calculus with complex numbers?

e Question: How to multiply two complex numbers in polar form,

r1exp(ify) - roexp(iby) = rirg exp (i(61 + 02 mod 27))

e Question: How to define exp, sin, cos for complex numbers. Properties of
exp.

e Question: How to take the limit lim,_, ., f(z) of a complex function.

e What is the complex logarithm In(z)? Where is it defined? Why is it not
the only solution to the equation exp(a + bi) = z and what are all the
solutions in terms of polar coordinates (r,8) for z?

2 Complex derivatives and holomorphicity ba-
sics (1.2)
Basic question: what are holomorphic functions? What are some examples?

e Question: What is a complex derivative? When does it exist?

e Cauchy-Riemann Theorem: holomorphicity implies existence of (con-
tinuous) partial derivatives. Conversely, existence of (continuous) partial
derivatives does not imply holomorphicity. We need to impose the Cauchy-
Riemann relation, 9, f = 40, f. Think: “rate of change in the ¢ direction
is ¢ times the rate of change in the 1 direction”.

e Analytic functions are holomorphic. Intuition of proof: the complex
derivative of any partial sum ZQ;O ar(z — 29)" is equal to Zi\;l kapzF—1.
In particular, Z,ICVZO ay(z—20)* are holomorphic functions and their deriva-

tives converge to > p; jarz"~! within the radius of convergence. To prove



the the theorem, we need to be a little more careful with convergence
(specifically: control the error terms that show up in the computation of
the derivative), but you don’t need to remember how to do this.

3 Path integrals and antiderivatives (1.3, II.1,
11.2)

Questions.

e What is the definition of f,y f(2)dz for v a path from a € C to b € C?

e What is fv f(2)dz when f has a holomorphic antiderivative F'? (Answer:

it is F'(b) — F'(a), this is the complex chain rule applied to the composition
Fo~.)

e Does this hold if we don’t assume f has an antiderivative in Q7 (Answer:
not necessarily.)

Statements.

e The functions z™ for any integer n # —1 have antiderivatives, so they are
easy to integrate along a path. In particular, their integral along a loop
equal to zero. (Why?)

e The fact 3501 % = 2mi implies that % cannot have an antiderivative on any

domain that contains the circle Cy. (Why?)

e Key theorem: Cauchy’s Theorem: if v is a simple closed loop and f is
holomorphic on (a domain containing) + and its interior, then f,y f(z)dz =
0. Derived from the (extremely similar) Goursat’s Theorem, which is
Cauchy’s theorem for a simple polygon (rectangle in class; triangle in
book. You can use any version.)

e Corollaries of Cauchy:

1. Antiderivative theorem: a function which is holomorphic
on the interior of a simple closed loop has a holomorphic
antiderivative in the interior of this loop.

2. If f is holomorphic on a simple closed loop v but ﬁ/ f(2)dz # 0 then f
must not be holomorphic (e.g. have a pole) somewhere in the interior
of ~.

4 Cauchy integral formula and Analyticity (I1.4,
Morera from I1.5)

Questions.



e How can we turn the seeming bug in complex analysis, that the change of
variables formula fails for loops, into a feature?

e How can we express a value or a derivative of f(zp) in terms of values of
f “far away” from z¢?

e When does the converse of “holomorphic = analytic” hold? (Answer:
always, because of Cauchy integral magic.)

Statements.

e Cauchy Integral formula If f is holomorphic on (a domain containing)
~ and the interior of v then

1 (2)
f(z0) = 9 4 z—zodz

for zp is in the interior of v (but not on + itself or else the path integral is
undefined!).

e Generalization More generally, we can compute any derivative £ (z)
in terms of a path integral using the following formula:

M) L g 10,

n! 2w ), (z— 2"t =

e Liouville: A consequence of Cauchy for first derivatives: a function
which is bounded and entire (everywhere holomorphic) must be constant.
Corollary: fundamental theorem of arithmetic (every polynomial with
coefficients in C has a root in C).

e Holomorphic functions are analytic. Notice that W is the nth
Taylor coefficient of f around zp. A real infinitely differentiable function
has a Taylor series, but might not be equal to the analytic function defined
by this series. A holomorphic function, however, satisfies f(z) = > a,(z—

(n) - . .
z0)" fora,, = fT(,ZO) within a nonzero radius of convergence. We show this

by expanding the term ﬁ in the Cauchy theorem as a geometric

Z—20)
series. This is one of the important ways in which complex analysis is

“magic”.

e Morera A consequence of analyticity is Morera’s theorem: a continuous
function (on a domain 2) whose integral over any simple closed loop is 0
must be holomorphic. Note that the converse is not necessarily true, since
) might not be simply connected (it might have a “hole”). But if  is, for
example, the interior of a simple closed curve, then the converse is true
by Cauchy’s theorem.



5 Poles and residues (III.1, IT1.2)

If f is defined on a domain €2 that contains all the points in some disk around zg
except for zg itself (sometimes called a punctured neighborhood of zp), then we
say f has an (at worst) isolated singularity at zo. The singularity removable if
f can be extended to zg holomorphically (in which case we say f is not singular
at z9). It is a pole if f is singular at 2o but f~! (here understood as ﬁ) is
not (in which case f~! must have a zero at zp). An isolated singularity which
is neither removable nor a pole is called an essential singularity.
Statements.

e A function f which is holomorphic at 2o has a zero of order n if f(z) =
(z — z0)"f(2) for f a function which is holomorphic and nonzero (a.k.a.
invertible) at zo. (If f(z9) # 0 we say f has a “zero of order zero” at zy.)

e A function f with a singularity at zg has a pole of order n if f~! has a
zero of order n.

e If f has a zero of order n it has a Taylor series f(z) = an(z — 20)™ +
O(z — 29)"*L. If f has a pole of order n then f(z) has a Laurent series,
f(2) = a_n(z — 2)™™ + O(z — 20)~ V. The finite sum Z,;:l_n apz®
is called the singular part, also known as the principal part. And the
(holomorphic at zp) infinite sum Y2, axz” is called the holomorphic
part.

e The most important term in the principal part is the residue, Res,,(f) =
a_y1 (for f =" ap(z — 29)* the Laurent expansion).

e A key formula: if f has a simple pole, i.e. a pole of order 1, at zg then
f(z) =a_1(2—2) ' +0(1) and f~' = a7 ' (z—20)' +O(2—20)?. Therefore
if we write g(z) = f~!(z) and it has a power series expansion g(z) =
S br(z —20)¥, then a_; = by * (in particular, it is never 0). Alternatively:
If f has a simple pole at zy, then

Res., f = (}) (20).

e The residue formula Assume f is defined on (a domain 2 that contains)
~ and also on the interior of v except for at finitely many points z1, ..., 2,
all of which are poles of f. Then ¢ f(z)dz = 2mi-(3_;_, Res;, f(2)). This
formula is obvious from the Laurent series expression if there is one pole
z1, and if there are multiple poles can be obtained either as a keyhole
contour argument or by observing that the sum of the singular parts of f
at the z; exactly cancels the singularities of f.



Toy contours, keyholes and proving an R — oo
integral goes to 0 (II.3 and other places).

It is sometimes useful to “split” a contour into smaller contours, using
cancellation of the path integral over a segment and the same segment
going in the opposite direction. We used this, for example, in our proof
of Goursat’s theorem. Sometimes it is useful instead to take a pair of
segments e apart which almost cancel, and to observe that they cancel in
the limit (this is the keyhole argument).

More generally, many integrals can be reduced to a path integral by taking
a limit of contours depending on a parameter R, taking this parameter to
00, and noticing that certain contour integrals go to zero. Useful facts:

1. For n > 2, the contour integral of a function of the form - (and

more generally, the inverse to a polynomial of degree n) will go to 0
over any arc of a circle of radius R — oo.

2. Asy — oo, the function e “*T%0 goes to 0 exponentially while |e®%0|
goes to oo exponentially in the x — oo limit.

3. Both |sin(e®™®)| and |cos(e®T¥)| go to oo exponentially in the
y — Foo limit (since they have both a e7¥%0 and an e¥~**° term).



