Math 185 Midterm.

1

(a) Prove that $|\sin (x+i y)+\cos (x+i y)| \geq \frac{\sqrt{2}}{2}|\exp (y)-\exp (-y)|$.
(b) Give a value of z where this inequality is an equality.

2

Prove that for any nonzero polynomial P, the function $P(\exp (1 / z))$ (defined on $\mathbb{C} \backslash 0$) will have an essential singularity at $z=0$. (Hint: subtract the constant term and look at the real limits $z \rightarrow 0^{+}$and $z \rightarrow 0^{-}$).

3

Compute the integral $\int_{-\infty}^{\infty} \frac{\exp (i x)}{\left(x^{2}+1\right)\left(x^{2}+4 i\right)} d x$.

4

Prove that the function (from \mathbb{C} to \mathbb{C}) given by $f(x+i y)=x^{2}+2 i x y+i y^{3}$ satisfies the Cauchy-Riemann equations on the real line $y=0$ but is not holomorphic.

5
Draw a simple closed curve γ such that the integral of $\frac{10^{\frac{z}{\pi}}}{\sin (z)}$ along γ is $2 \pi i \cdot 90.009$ (Here the function 10^{z} is defined as $\exp (z \cdot \log (10))$.

6

Find the Laurent series expansion at 0 of the function $f(z)=\frac{1}{\exp (z)+i \exp (i z)-1-i}$ up to the z^{1} term. What order of singularity is this pole? Compute the residue of f at 0 .

