
Math 185 Final Topics

May 4, 2020

1 New material

1.1 Conformal functions and mappings: complex analysis
in a more general geometric context

Useful source: https://math.mit.edu/~jorloff/18.04/notes/topic10.pdf.

• A conformal function is a function which preserves angles. A conformal
mapping is a bijective conformal function.

• Two surfaces X,Y are said to be conformally equivalent if a conformal
mapping f : X → Y exists.

• A conformal mapping f : Ω→ Ω′ has an inverse, which is also conformal.

• Statements: For two complex domains Ω and Ω′, a function f : Ω → Ω′

is conformal if and only if f is holomorphic and for all z ∈ Ω, we have
f ′(z) 6= 0.

• A conformal mapping f : Ω → S2 (for S2 the Riemann sphere) is equiv-
alent to the data of a meromorphic function (function with isolated sin-
gularities which are poles) F : Ω− → C such that F has at worst simple
poles and F ′(z) 6= 0 when z ∈ Ω is not a pole. The correspondence is via
f(z) := P−1

N (F (z)), with f(z) := N (the north pole, corresponding to the
point at “infinity”) for z a pole.

• A conformal function f : S2 → X (for X any domain in the plane, the
sphere, or any other surface) is a continuous function f : S2 → X for
which both f ◦ PN and f ◦ P̄S are conformal functions from C to X.

• Any conformal function f : S2 → S2 is the extension of a fractional linear
transformation.

• For D ⊂ C the unit disk Any conformal function f : D → D is also a
fractional linear transformation, of a particular kind (specifically: z 7→
z−α

1−ᾱ·z for some complex number α). There exists a conformal function
(indeed, many) that take any point of the disk to any other point.
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• Riemann mapping theorem. The interior of any simple closed curve
in C (and more generally, any proper simply-connected open domain in
C) is conformally equivalent to the disk.

• Uniformization theorem (for the disk): any surface X ⊂ R3 (or more
generally in Rn) which is smoothly topologically equivalent to the open
disk (i.e., parametrized by a disk with injective Jacobian at every point)
is conformally equivalent either to the disk D or the plane C.

1.2 The argument principle

• A good source with more details: https://math.mit.edu/~jorloff/18.
04/notes/topic11.pdf.

• For a function f : Ω→ C, its logarithmic derivative is defined as dlogf
dz :=

f ′

f . It satisfies dlog(fg)dz = dlogf
dz + dlogg

dz .

• Main result: if f : Ω− → C is a meromorphic function (function with
isolated singularities which are poles) and γ is a simple closed curve in Ω,
then

∮
γ

dlogf
dz = 2πi(Z − P ), where Z is the number of zeroes and P the

number of poles in the interior of γ, counted with multiplicity.

2 Old material

2.1 Complex numbers and functions (I.1, Chap. 1 of
Gamelin)

Basic question: how to do algebra and calculus with complex numbers?

• Question: How to multiply two complex numbers in polar form,

r1 exp(iθ1) · r2 exp(iθ2) = r1r2 exp (i(θ1 + θ2 mod 2π))

• Question: How to define exp, sin, cos for complex numbers. Properties of
exp.

• Question: How to take the limit limz→z0 f(z) of a complex function.

• What is the complex logarithm ln(z)? Where is it defined? Why is it not
the only solution to the equation exp(a + bi) = z and what are all the
solutions in terms of polar coordinates (r, θ) for z?

2.2 Complex derivatives and holomorphicity basics (I.2)

Basic question: what are holomorphic functions? What are some examples?

• Question: What is a complex derivative? When does it exist?
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• Cauchy-Riemann Theorem: holomorphicity implies existence of (con-
tinuous) partial derivatives. Conversely, existence of (continuous) partial
derivatives does not imply holomorphicity. We need to impose the Cauchy-
Riemann relation, ∂yf = i∂xf. Think: “rate of change in the i direction
is i times the rate of change in the 1 direction”.

• Analytic functions are holomorphic. Intuition of proof: the complex
derivative of any partial sum

∑N
k=0 ak(z− z0)k is equal to

∑N
k=1 kakz

k−1.

In particular,
∑N
k=0 ak(z−z0)k are holomorphic functions and their deriva-

tives converge to
∑∞
k=1 jakz

k−1 within the radius of convergence. To prove
the the theorem, we need to be a little more careful with convergence
(specifically: control the error terms that show up in the computation of
the derivative), but you don’t need to remember how to do this.

2.3 Path integrals and antiderivatives (I.3, II.1, II.2)

Questions.

• What is the definition of
∫
γ
f(z)dz for γ a path from a ∈ C to b ∈ C?

• What is
∫
γ
f(z)dz when f has a holomorphic antiderivative F? (Answer:

it is F (b)−F (a), this is the complex chain rule applied to the composition
F ◦ γ.)

• Does this hold if we don’t assume f has an antiderivative in Ω? (Answer:
not necessarily.)

Statements.

• The functions zn for any integer n 6= −1 have antiderivatives, so they are
easy to integrate along a path. In particular, their integral along a loop
equal to zero. (Why?)

• The fact
∮
C1

1
z = 2πi implies that 1

z cannot have an antiderivative on any

domain that contains the circle C1. (Why?)

• Key theorem: Cauchy’s Theorem: if γ is a simple closed loop and f is
holomorphic on (a domain containing) γ and its interior, then

∮
γ
f(z)dz =

0. Derived from the (extremely similar) Goursat’s Theorem, which is
Cauchy’s theorem for a simple polygon (rectangle in class; triangle in
book. You can use any version.)

• Corollaries of Cauchy:

1. Antiderivative theorem: a function which is holomorphic
on the interior of a simple closed loop has a holomorphic
antiderivative in the interior of this loop.

2. If f is holomorphic on a simple closed loop γ but
∮
γ
f(z)dz 6= 0 then f

must not be holomorphic (e.g. have a pole) somewhere in the interior
of γ.
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2.4 Cauchy integral formula and Analyticity (II.4, Morera
from II.5)

Questions.

• How can we turn the seeming bug in complex analysis, that the change of
variables formula fails for loops, into a feature?

• How can we express a value or a derivative of f(z0) in terms of values of
f “far away” from z0?

• When does the converse of “holomorphic =⇒ analytic” hold? (Answer:
always, because of Cauchy integral magic.)

Statements.

• Cauchy Integral formula If f is holomorphic on (a domain containing)
γ and the interior of γ then

f(z0) =
1

2πi

∮
γ

f(z)

z − z0
dz

for z0 is in the interior of γ (but not on γ itself or else the path integral is
undefined!).

• Generalization More generally, we can compute any derivative f (n)(z0)
in terms of a path integral using the following formula:

f (n)(z0)

n!
=

1

2πi

∮
γ

f(z)

(z − z0)n+1
dz.

• Liouville: A consequence of Cauchy for first derivatives: a function
which is bounded and entire (everywhere holomorphic) must be constant.
Corollary: fundamental theorem of arithmetic (every polynomial with
coefficients in C has a root in C).

• Holomorphic functions are analytic. Notice that f(n)(z0)
n! is the nth

Taylor coefficient of f around z0. A real infinitely differentiable function
has a Taylor series, but might not be equal to the analytic function defined
by this series. A holomorphic function, however, satisfies f(z) =

∑
an(z−

z0)n for an = f(n)(z0)
n! within a nonzero radius of convergence. We show this

by expanding the term 1
(z−z0)n+1 in the Cauchy theorem as a geometric

series. This is one of the important ways in which complex analysis is
“magic”.

• Morera A consequence of analyticity is Morera’s theorem: a continuous
function (on a domain Ω) whose integral over any simple closed loop is 0
must be holomorphic. Note that the converse is not necessarily true, since
Ω might not be simply connected (it might have a “hole”). But if Ω is, for
example, the interior of a simple closed curve, then the converse is true
by Cauchy’s theorem.
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2.5 Poles and residues (III.1, III.2)

If f is defined on a domain Ω that contains all the points in some disk around z0

except for z0 itself (sometimes called a punctured neighborhood of z0), then we
say f has an (at worst) isolated singularity at z0. The singularity removable if
f can be extended to z0 holomorphically (in which case we say f is not singular
at z0). It is a pole if f is singular at z0 but f−1 (here understood as 1

f(z) ) is

not (in which case f−1 must have a zero at z0). An isolated singularity which
is neither removable nor a pole is called an essential singularity.

Statements.

• A function f which is holomorphic at z0 has a zero of order n if f(z) =
(z − z0)nf̃(z) for f̃ a function which is holomorphic and nonzero (a.k.a.
invertible) at z0. (If f(z0) 6= 0 we say f has a “zero of order zero” at z0.)

• A function f with a singularity at z0 has a pole of order n if f−1 has a
zero of order n.

• If f has a zero of order n it has a Taylor series f(z) = an(z − z0)n +
O(z − z0)n+1. If f has a pole of order n then f(z) has a Laurent series,

f(z) = a−n(z − z0)−n + O(z − z0)−(n−1). The finite sum
∑−1
k=−n akz

k

is called the singular part, also known as the principal part. And the
(holomorphic at z0) infinite sum

∑∞
k=0 akz

k is called the holomorphic
part.

• The most important term in the principal part is the residue, Resz0(f) =
a−1 (for f =

∑
ak(z − z0)k the Laurent expansion).

• A key formula: if f has a simple pole, i.e. a pole of order 1, at z0 then
f(z) = a−1(z−z0)−1+O(1) and f−1 = a−1

1 (z−z0)1+O(z−z0)2. Therefore
if we write g(z) = f−1(z) and it has a power series expansion g(z) =∑
bk(z− z0)k, then a−1 = b−1

1 (in particular, it is never 0). Alternatively:
If f has a simple pole at z0, then

Resz0f =

(
1

f

)′
(z0).

• The residue formula Assume f is defined on (a domain Ω that contains)
γ and also on the interior of γ except for at finitely many points z1, . . . , zn,
all of which are poles of f . Then

∮
γ
f(z)dz = 2πi ·(

∑n
k=1 Reszkf(z)) . This

formula is obvious from the Laurent series expression if there is one pole
z1, and if there are multiple poles can be obtained either as a keyhole
contour argument or by observing that the sum of the singular parts of f
at the zk exactly cancels the singularities of f .
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2.6 Toy contours, keyholes and proving an R→∞ integral
goes to 0 (II.3 and other places).

• It is sometimes useful to “split” a contour into smaller contours, using
cancellation of the path integral over a segment and the same segment
going in the opposite direction. We used this, for example, in our proof
of Goursat’s theorem. Sometimes it is useful instead to take a pair of
segments ε apart which almost cancel, and to observe that they cancel in
the limit (this is the keyhole argument).

• More generally, many integrals can be reduced to a path integral by taking
a limit of contours depending on a parameter R, taking this parameter to
∞, and noticing that certain contour integrals go to zero. Useful facts:

1. For n ≥ 2, the contour integral of a function of the form 1
zn (and

more generally, the inverse to a polynomial of degree n) will go to 0
over any arc of a circle of radius R→∞.

2. As y →∞, the function e−x+iy0 goes to 0 exponentially while |ex+iy0 |
goes to ∞ exponentially in the x→∞ limit.

3. Both | sin(ex0+iy)| and | cos(ex0+iy)| go to ∞ exponentially in the
y → ±∞ limit (since they have both a e−y+ix0 and an ey−ix0 term).
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