Math 185 Practice problems for final

May 9, 2020

1 New material

1. (a) Construct a conformal equivalence between the strip $\{x+i y \mid$ $0<x+y<\pi$ and the unit disk \mathbb{D}.

First construct an equivalence bewtween the the strip and the horizontal strip $0<y<\pi$: we can do this by $f_{1}(z)=(1+i) z$. Then apply $f_{2}: z \mapsto \exp (z)$, to get from the strip to the half-plane. Finally, apply $f_{3}: z \mapsto \frac{z-i}{z+i}$, a to identify the upper half-plane with the disk \mathbb{D}. So the composed map is $f_{3} \circ f_{2} \circ f_{1}$, which is

$$
z \mapsto f_{3}(\exp ((1+i) z)),
$$

for f_{3} the fractional linear transformation above.
(b) Construct a conformal equivalence f between the "angle" $\{z \in$ $\mathbb{C} \mid z \neq 0,0<\arg (z)<\pi / 3\}$ and the unit disk $\mathbb{D} \subset \mathbb{C}$.

Start with the map $z \mapsto z^{3}$ for a bijective map between Ω and the upper half-plane \mathbb{H}. Then apply the conformal equivalence f_{3} from the half-plane to the disk. We get the composition $f: z \mapsto \frac{z^{3}-i}{z^{3}+i}$.
2. Suppose that $f: S^{2} \rightarrow S^{2}$ is a holomorphic (conformal except at finitely many points) function from the Riemann sphere to itself. Let $F: \mathbb{C}-\rightarrow \mathbb{C}$ be the (partially defined) corresponding meromorphic function, given (where defined) by $F(z)=P \circ f \circ P_{N}^{-1}(z)$. Suppose that f is conformal at every preimage point of N. Show that the meromorphic function $F(z)$ is given by the formula $f(z)=a z+b+$ $\sum_{k=1}^{n} \frac{a_{n}}{z-z_{k}}$, for $a, b, a_{1}, \ldots, a_{n}$ complex constants and z_{1}, \ldots, z_{n} distinct complex numbers.

Let F be the (partially defined) function $F=P_{N}^{-1} \circ f \circ P_{N}$. Let $p \in S^{2} \backslash N$, and $z_{0}=P_{N}(p)$. Then $f(p)=N$ if and only if F has a pole at z_{0}. For such z_{0}, we have f is conformal at z_{0} if and only if $\frac{1}{F}^{\prime}(z) \neq 0$, i.e. if F has a simple pole at z_{0}. We also know that $f(N)=N$ (i.e., $\lim _{|z| \rightarrow \infty}|F(z)|=\infty$.) Conformality at N (corresponding to ∞) is equivalent to the requirement that $F(1 / z)$ has a simple pole at 0 , i.e. for $G(w)=F(1 / w)$, we are requiring for $\lim _{z \rightarrow 0} z G(z)$ to exist (and be nonzero).

Now let $z_{1}, z_{2}, \ldots, z_{n}$ be the residues of F at all preimages of N other than N itself (there are finitely many since a closed subset of S^{2} is compact). Let a_{k} be the residue at z_{k} (equivalently, the leading term of the Laurent series). Define $\tilde{F}(z):=F(z)-\sum \frac{a_{k}}{z-z_{k}}$. Then $\tilde{F}(z)$ is a now holomorphic function, and since $\lim _{z \rightarrow \infty} \frac{a_{k}}{z-z_{k}}=0$, we deduce that $\lim _{|z| \rightarrow \infty} \frac{\tilde{F}(z)}{z}=\lim _{|z| \rightarrow \infty} \frac{F}{z}$, which is a finite number. Thus $\tilde{F}(z)$ is a holomorphic function of linear growth. We can now apply the Cauchy inequalities to deduce that the second derivative $\tilde{F}^{(2)}(z)=0$ for any z, i.e. \tilde{F} is linear. ${ }^{1}$

So $\tilde{F}(z)=a z+b$ and (by definition of \tilde{F}) we have

$$
F(z)=\tilde{F}(z)+\sum_{k=1}^{n} \frac{a_{k}}{z-z_{k}}
$$

as desired.

3. Define the function $f: \mathbb{C} \rightarrow \mathbb{R}^{3}$ given by

$$
f(x+i y)=(\cos x, \sin x, y)
$$

Let $Y=\operatorname{Im} f \subset \mathbb{R}^{3}$. the image of f, be the vertical unit cylinder.
(a) Show that f is a conformal map. Let $\vec{v}:=\frac{d f}{d x}$ and $\vec{w}:=\frac{d f}{d y}$. Then $\vec{v}=(-\sin (x), \cos (x), 0)$ and $\vec{y}=(0,0,1)$. These are orthogonal vectors of the same length, so the derivative of f takes an orthonormal basis to the rescaling of an orthonormal pair of vectors. Hence it preserves angles.
(b) Let $\mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$ be the set of complex numbers except the origin. Find a (bijective) conformal mapping $g: \mathbb{C}^{*} \rightarrow Y$. Compare with the conformal map $\exp (i z): \mathbb{C} \rightarrow \mathbb{C}^{*}$. Since both $f: \mathbb{C} \rightarrow Y$ and $\exp (i z)$: $\mathbb{C} \rightarrow \mathbb{C}^{*}$ are conformal and periodic with period 2π, we can check whether the composition $f(\log (z))$ extends to the entire \mathbb{C}^{*}. Indeed, we obtain the function $g:(r, \theta) \mapsto(\sin \theta, \cos \theta, \log (r))$, which is well-defined and continuous for all $r>0, \theta \in[0,2 \pi)$ (continuous since neither sin nor cos change when θ changes by 2π).

In fact conformality for g can be seen to follow from conformality of (an appropriately chosen branch of) \log and conformality of f. We check it directly: we use that the curves $\gamma_{r}(t):=(\theta, r+t)$ and $\gamma_{\theta}(t):=(r, \theta+t / r)$ have derivatives $v=\hat{\theta}$ and $w=\hat{\theta} \cdot i$, respectively, which form an orthogonal basis. Now $\frac{d f}{d \gamma_{\theta}}=$ $\frac{(\cos \theta, \sin \theta, 0)}{r}$ and $\frac{d f}{d \gamma_{t}}=\frac{(0,0,1)}{r}$, so a pair of orthogonal vectors gets sent to a pair of orthogonal vectors of equal length $(1 / r)$. This implies that angles are conserved.
4. Let Ω be a simple closed curve and $p \in \operatorname{Int} \Omega$ a point in its interior. Let \mathbb{D} be the unit disk.

[^0](a) Show that there exists a conformal equivalence (i.e., mapping) from $\Omega \backslash\{p\}$ to $\mathbb{D} \backslash\{0\}$.

The Riemann mapping theorem says that there is a conformal mapping $f: \Omega \rightarrow \mathbb{D}$. It might not take p to 0 . Suppose $f(p)=w$. Let $f_{w}: \mathbb{D} \rightarrow \mathbb{D}$ be the conformal map $f_{w}: z \mapsto \frac{z-w}{1-\bar{w} z}$. Then composing with f_{w} sends w is a conformal mapping from \mathbb{D} to itself which takes w to 0 . Set $g=f_{w} \circ f$. Then g maps $\Omega \backslash p$ bijectively to $\mathbb{D} \backslash 0$, giving the desired map.
(b) Show that there does not exist a conformal equivalence from \mathbb{C}^{*} to $\mathbb{D} \backslash\{0\}$.

Assume $f: \mathbb{C}^{*} \rightarrow \mathbb{D} \backslash 0$ is a conformal mapping. Define $h(z)=f(\exp (z))$. Then h is an entire bounded function. By Liouville, h is constant. This contradicts f being a bijection.
(c) Using problem 3, deduce that there does not exist a conformal equivalence from the cylinder Y to $\mathbb{D} \backslash\{0\}$.

Assume $\alpha: Y \rightarrow \mathbb{D} \backslash 0$ is such a mapping. Let $g: \mathbb{C}^{*} \rightarrow Y$ be the conformal mapping from problem 3b. Then $\alpha \circ g$ would contradict (c). (Alternatively: let $f: \mathbb{C} \rightarrow Y$ be the map from 3a. Then $\alpha \circ f$ would be an entire bounded function, contradicting α being conformal.

2 Old material

5. (a) If f and g have a pole at z_{0} then $f+g$ has a pole at z_{0}. False: take $f=1 / z$ and $g=-1 / z$.
(b) If f and g have a pole at z_{0} and both have nonzero residues the $f g$ has a pole at z_{0} with a nonzero residue. False. Take $f=1 / z$ and $g=1 / z$. (However taking e.g. $f=1+1 / z$ and $g=1 / z$ would create a nonzero residue!)
(c) If f has an essential singularity at $z=0$ and g has a pole of finite order at $z=0$ then $f+g$ has an essential singularity at $z=0$.

True. (Equivalent to the sum of two functions with at worst a pole at $z=0$ having sum with at worst a pole.)
(d) If $f(z)$ has a pole of order m at $z=0$ then $f\left(z^{2}\right)$ has a pole of order $2 m$. True. Look at leading Laurent coefficient.
6. Line integrals (a) Compute $\int_{C} x d z$ where C is the unit square bounding $\{(x+i y \mid 0 \leq x, y \leq 1\}$. Answer: $-i$.
(b) Compute $\int_{C} \frac{1}{|z|} d z$, where C is the unit circle. Answer: 0.
(c) Compute $\int_{C} \frac{z^{2}-1}{z^{2}+1} d z$, where C is the circle of radius 2. Answer: 0 (the two residues cancel.)
(d) Compute $\int_{C} \frac{e^{z}}{z^{2}} d z$, where C is the circle $|z|=1$. Answer: $2 \pi i$
6. Suppose f is entire and $|f(z)|>1$ for all z. Show that f is constant. Apply Liouville to $1 / f$.

[^0]: ${ }^{1}$ Alternatively to see \tilde{F} is linear: we can observe that $\frac{\tilde{F}}{z}-\frac{\tilde{F}(0)}{z}$ is an entire, bounded function, hence constant.

