List of "facts" about conformal maps

May 12, 2020

1. A conformal function is one that preserves angles.
2. A conformal mapping is a conformal function that is a bijection.
3. To check the conformal property for a function $f: X \rightarrow Y$ at a point $p \in X$, find an orthonormal basis \vec{v}_{1}, \vec{v}_{2} in the tangent space of X. Then f is conformal at p if and only if $J_{p} f\left(\vec{v}_{1}\right), J_{p} f\left(\vec{v}_{2}\right)$ are orthogonal vectors of the same length. Here $J_{p} f$ is the Jacobian of f. Equivalently, if and only if for some pair of curves γ_{1}, γ_{2} with orthonormal tangent vectors $v_{1}:=\frac{d \gamma_{1}}{d t}(0), v_{2}:=\frac{d \gamma_{2}}{d t}(0)$, the vectors $\frac{d f \circ \gamma_{1}}{d t}(0)$ and $\frac{d f \circ \gamma_{2}}{d t}(0)$ are orthogonal and have the same nonzero length. ${ }^{1}$
4. In the special case $X \subset \mathbb{C}$, the above criterion for $f: X \rightarrow Y$ to be conformal is equivalent to $\frac{d f}{d x}, \frac{d f}{d y}$ being orthogonal, nonzero, and having the same length.
5. The composition of two conformal functions (respectively, mappings) is a conformal function (respectively, mapping). A confomral mapping always has an inverse, which is also confromal.
6. For $\Omega \subset \mathbb{C}$ an open domain, a function $f: \Omega \rightarrow \mathbb{C}$ (or $f: \Omega \rightarrow \Omega^{\prime}$ for Ω^{\prime} also in \mathbb{C}) is conformal at z_{0} if and only if it is holomorphic and $f^{\prime}\left(z_{0}\right) \neq 0$. In particular, it is conformal if the property $f^{\prime}\left(z_{0}\right) \neq 0$ holds for all $z_{0} \in \Omega$.
7. A conformal function $f: \Omega \rightarrow S^{2}$ is the same data as a meromorphic function $F: \Omega-\longrightarrow \mathbb{C}$ (i.e., a function which is either holomorphic or has isolated singularities all of which are poles), whose poles are simple and which has nonzero derivative at all points $z \in \Omega$ which are not a pole. The relationship is $F(z)=P_{N}(f(z))$, with poles precisely when $f(z)=N$.
8. For any surface X, a conformal map $f: S^{2} \rightarrow X$ is equivalent to a map $F: \mathbb{C} \rightarrow X$ such that F is conformal and the function $G(z):=F(1 / z)$ (a priori defined on $\mathbb{C} \backslash\{0\})$ extends to a conformal function on the entire plane \mathbb{C}. Here f is related to F and G by $F=f \circ P_{N}^{-1}$ and $G=f \circ \bar{P}_{S}^{-1}$

[^0](here P_{N} and \bar{P}_{S} are Northern and Southern stereographic projection, respectively).
9. In particular, a conformal function $S^{2} \rightarrow S^{2}$ is equivalent to a meromorphic function F with simple poles and nonzero derivatives such that the function $G=F(1 / z)$ is also meromorphic and has either a simple pole or a nonzero (note that if F has a simple pole or a finite value with nonzero derivative at z_{0} and $z_{0} \neq 0$ then G has a simple pole or finite value with nonzero derivative at $1 / z_{0}$. This means that the only value where the properties of G need to be verified is near $z=0$.) We have seen that any such map is in fact associated to a fractional linear transformation.
10. A holomorphic function $\Omega \rightarrow S^{2}$ (defined as a continuous function which is conformal except possibly at finitely many points) is equivalent to a meromorphic function on Ω (i.e. a function with at worst isolated singularities all of which are poles).
11. A holomorphic function $S^{2} \rightarrow S^{2}$ is then determined by a meromorphic function $F: \mathbb{C}-\rightarrow \mathbb{C}$ such that $F(1 / z)$ is also meromorphic. ${ }^{2}$
12. Any simply connected open $\Omega \subset \mathbb{C}$ which is not \mathbb{C} itself is conformally equivalent to the unit disk \mathbb{D}. (We showed this more particularly for Ω which are cut out by simple closed curves.)
13. Any map from \mathbb{D} to itself is called a conformal automorphism, and must have the form $e^{i \theta} f_{\alpha}$, for f_{α} the fractional linear transformation
$$
f_{\alpha}: z \mapsto \frac{z-\alpha}{1-\bar{\alpha} z} .
$$
(This is sometimes known as the Schwartz lemma.)
14. The fractional linear transformation $g: z \mapsto \frac{z-i}{z+i}$ gives a conformal mapping from the unit disk \mathbb{D} to the conformal plane \mathbb{H} (defined as $\mathbb{H}=\{z \mid$ $\operatorname{Im}(z)>0\})$. Any other such tranformation $\tilde{g}: \mathbb{D} \rightarrow \mathbb{H}$ will be related to g by $\tilde{g}=g \circ f$ for $f: \mathbb{D} \rightarrow \mathbb{D}$ a conformal automorphism (to see this: take $\left.f=g^{-1} \circ \tilde{g}\right)$.

15. A conformal automorphism $h: \mathbb{H} \rightarrow \mathbb{H}$ is given by the fractional linear transformation $z \mapsto \frac{a z+b}{c z+d}$, for a, b, c, d real numbers satisfying $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|>0$.
16. Other useful conformal mappings:
(a) $\exp (z)$ between the strip $0<\operatorname{Im}(z)<\pi$ and \mathbb{H},
(b) $\exp (z)$ between the strip $-\pi<\operatorname{Im}(z)<\pi$ and $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$
(c) $\log (z)$, the inverse of the above mapping.
[^1]
[^0]: ${ }^{1}$ Here and in the subsequent parts I am being sloppy about the difference between conformal and anticonformal, i.e. angle-preserving and angle-reversing. You can safely ignore this difference for the purposes of the exam.

[^1]: ${ }^{2}$ Though we did not show this, it can be shown that any such function is rational, i.e. the quotient of two nonzero polynomials.

