## Math 185 Homework 1. Due Friday 1/31 (later homeworks due Wednesday)

1. Define $\exp (i y):=\cos (y)+i \sin (y)$.
a. Prove, using trigonometry, that $\exp \left(i y+i y^{\prime}\right)=\exp (i y) \cdot \exp \left(i y^{\prime}\right)$ for $y, y^{\prime} \in \mathbb{R}$ two real numbers.
b. Prove directly (using Taylor series for sin and cos) that

$$
\exp (i y)=\sum_{n=1}^{\infty} \frac{(i y)^{n}}{n!}
$$

where $n$ ! denotes the factorial of $n$. Hint: you may use the fact that an infinite sum of complex numbers $\sum a_{n}$ converges if and only if $\sum \operatorname{Re}\left(a_{n}\right)$ and $\sum \operatorname{Im}\left(a_{n}\right)$ both converge and if it converges, $\sum a_{n}=\sum \operatorname{Re}\left(a_{n}\right)+i \sum \operatorname{Im}\left(a_{n}\right)$. Now apply this to $a_{n}=\frac{(i y)^{n}}{n!}$.
2. This and the following exercise are meant to help develop your thinking about complex numbers. They do not follow the book: you will need to think a bit on your own in order to solve these. For a positive real number $r \in \mathbb{R}$, define

$$
C_{r}:=\{z|\quad| z \mid=r\}
$$

to be the circle of radius $r$ around 0 .
Let $\mathbb{G}=\{x+i y \mid x, y \in \mathbb{Z}\}$ (called the set of "Gaussian numbers") be the set of complex numbers with integer real and imaginary part.
a. Prove that the product $z \cdot z^{\prime}$ of two elements $z, z^{\prime} \in \mathbb{G}$ is again in $\mathbb{G}$.
b. Prove that $\mathbb{G} \cap C_{1}=\{ \pm 1, \pm i\}$. In other words, the only elements $z \in \mathbb{G}$ with $|z|=1$ are the four distinct powers or $i$.

From now on, we write $U_{4}:=\{ \pm 1, \pm i\}$ (here $U_{4}$ stands for "fourth roots of unity").
c. Prove that if $|z|=r$ then $|u z|=r$ for $u \in U_{4}$ and $|\bar{z}|=r$. Let $C_{r} \subset \mathbb{C}$ be the circle of radius $r$, given by $C_{r}=\{z \in \mathbb{C}| | z \mid=r\}$. Show that the number of points $\left|C_{r}\right|$ is finite and has number of elements divisible by $4^{1}$. (Hint: the set $\{ \pm 1, \pm i\}$ has four elements).

[^0]d. Show that if (for two numbers $r, s \in \mathbb{R}$ ), the circles $C_{r}$ and $C_{s}$ both contain a Gaussian number then the circle $C_{r s}$ also contains a Gaussian number. Deduce that if $m, n$ are integers which can be expressed as the sum of two squares then $m n$ can be as well (hint: show that $m$ is the sum of two squares if and only if $C_{\sqrt{m}}$ contains a Gaussian number).
e. Find all Gaussian numbers of length $\sqrt{5}$, i.e. all numbers in $C_{\sqrt{5}} \cap \mathbb{G}$. Sketch them (or draw them on graph paper.) Connect pairs of numbers which are related by multiplication by $\pm i$. (This should split your numbers into "squares").
3. Now we do the same thing for the ring of Eisenstein integers. Define the set of Eisenstein integers $\mathbb{E}$ to be the set of integers $\mathbb{E}:=\left\{\left.\frac{a+b \sqrt{3} i}{2} \right\rvert\, a \equiv b \bmod 2\right.$. So for example, $-5 \sqrt{3} i \in \mathbb{E}$ and $3-\sqrt{3} i \in \mathbb{E}$ bue $1+\frac{\sqrt{3}}{2}$ is not in $\mathbb{E}$.
a. Draw a (sketch) of the Eisenstein integer lattice. (You should get something with hezagonal symmetry!) Show that the set of Eisenstein integers is closed under multiplication, so if $z, z^{\prime} \in \mathbb{E}$, then so is $z \cdot z^{\prime}$.
b. Let $\zeta:=\exp \left(\frac{2 \pi i}{6}\right)$, also known as "the primitive sixth root of unity". (The Greek letter $\zeta$ is pronounced "zeta" and written " $\backslash$ zeta" in $\mathrm{AAT}_{\mathrm{E} X}$ ). Show that $\zeta \in \mathbb{E}$ (in fact, you can observe that $\mathbb{E}=\{a+b \zeta \mid a, b \in \mathbb{Z}\}$ ). Show that $\zeta^{6}=1$, that $-\zeta=\zeta^{4}$ and $\bar{\zeta}=\zeta^{-1}$.
c. Show that $C_{1} \cap \mathbb{E}=\left\{1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}\right\}$ is the set of the six distinct powers of $\zeta$. (The notation $C_{r}$ is, as before, the circle of radius $r$.)

From now on, we write $U_{6}:=\left\{\zeta^{k}, 0 \leq k \leq 5\right\}$ for the set of unit Eisenstein numbers (here $U_{6}$ stands for "sixth roots of unity").
d. Show that if $z \in C_{r}$ (equivalently, $|z|=r$ ) then $\zeta^{n} z$ and $\bar{z}$ are also in $C_{r}$. Deduce that the set of Eisenstein integers in the circle $C_{r}$ has number of elements divisible by 6 .
e. Find and draw twelve elements in $C_{\sqrt{7}} \cap \mathbb{E}$ (these are in fact all the elements of $\mathbb{E}$ of length $\sqrt{7}$ ). Connect by a segment pairs of elements related by multiplication by $\zeta$. (You should get two hexagons each consisting of groups of $U_{6}$-multiples!)
4. Fix a positive integer $n$. Let $z_{a, b} \in \mathbb{C}$ be an array of numbers indexed by pairs of integers $a, b$ with $0 \leq a \leq n$ and $0 \leq b \leq n$ (you can think of this as an $n+1$ by $n+1$ square matrix, but thinking of $z_{a, b}$ as being in the point $(a, b)$ of the plane rather than $(b, a)$ as would be the case for matrix notation). Let $h_{a, b}:=z_{a+1, b}-z_{a, b}$ for $0 \leq a \leq n-1,0 \leq b \leq n$ be the matrix of horizontal differences (notice that $z_{a+1, b}$ only makes sense for $a \leq n-1$ ). Similarly, let $v_{a, b}:=z_{a, b+1}-z_{a, b}$ for $0 \leq a \leq n$ and $0 \leq b \leq n-1$ be the matrix of vertical differences.
a. Show that for any pair of indices $a, b \in\{0, \ldots, n-1\}$ we have

$$
\begin{equation*}
v_{a, b}-v_{a+1, b}=h_{a, b}-h_{a, b+1} \tag{1}
\end{equation*}
$$

It is helpful to think of the difference $v_{a, b}$ as corresponding to the vertical edge between the points $(a, b)$ and $(a, b+1)$ and similarly for $h_{a, b}$ on a horizontal edge. This question is asking you to prove an identity about the numbers written on the edges of the little square connecting the four vertices $(a, b),(a+1, b),(a+$ $1, b+1)$ and $(a, b+1)$.
b. Conversely, show that if we have collections of numbers $v_{a, b}$ (for $a \leq n, b \leq$ $n-1$ ) and $h_{a, b}$ (for $a \leq n-1, b \leq n$ ) as above which satisfy equation (1) then there exists a collection of $z_{a, b}$ with $h_{a, b}=z_{a+1, b}-z_{a, b}$ and $v_{a, b}=z_{a, b+1}-z_{a, b}$, and that any two possibilities for the numbers $z_{a, b}$ differ from each other by a constant.

Hint: Assume that $z_{0,0}$ is some constant number $c \in \mathbb{C}$. By considering the differences between consecutive pairs in the path $z_{0,0} \rightarrow z_{1,0} \rightarrow \cdots \rightarrow z_{a, 0} \rightarrow$ $z_{a, 1} \rightarrow z_{a, 2} \rightarrow \cdots \rightarrow z_{a, b}$, write a expression for $z_{a, b}$ in terms of $v_{j, k}$ and $h_{j, k}$. Now check that $h_{j, k}$ and $v_{j, k}$ are indeed the differences.
c. Let $\lambda_{h}, \lambda_{v} \in \mathbb{C}$ be two arbitrary complex numbers. Define arrays

$$
h_{a, b}:=\lambda_{h} \cdot(a+b i)
$$

and

$$
v_{a, b}:=\lambda_{v} \cdot(a+b i)
$$

Show that equation (1) is satisfied (so these particular choices $h_{a, b}, v_{a, b}$ are indeed differences) of and only if $\lambda_{v}=i \cdot \lambda_{h}$.

Notice the similarity between the condition $\lambda_{v}=i \cdot \lambda_{h}$ and complex differentiability. A continuous version of this type of argument (with $z_{a, b}:=f\left(\frac{a+b i}{n}\right)$, and with $n$ approaching $\infty$ ) is useful for proving integration and differentiation formulas for holomorphic functions.


[^0]:    ${ }^{1}$ if $C_{r} \cap \mathbb{G}$ is empty, it has 0 elemnts, which is divisible by 4.

