Math 141 Homework 7

Yimeng Wang | SID: 3032662700
October 2019
1.(G.P 5.4) Let X and X be transversal submanifolds of Y. Prove that if $y \in X \cap Z$, then

$$
T_{y}(X \cap Z)=T_{y}(X) \cap T_{y}(Z)
$$

Solution. Let $\operatorname{dim}(Y)=n$. Suppose $y \in X \cap Z$, since $X \cap Z \subset X$, we have $T_{y}(X \cap Z) \subset T_{y}(X)$. Similarly, we have $T_{y}(X \cap Z) \subset T_{y}(Z)$. As a result, $T_{y}(X \cap Z) \subset T_{y}(X) \cap T_{y}(Z)$. Now since X, Z are intersecting manifolds, we have $\operatorname{codim}(X \cap Z)=\operatorname{codim}(X)+\operatorname{codim}(Z)$. In other words, $\operatorname{dim}(X \cap Z)=\operatorname{dim}(Y)-\operatorname{codim}(X)-\operatorname{codim}(Z)=$ $\operatorname{dim}(Y)-(\operatorname{dim}(Y)-\operatorname{dim}(X))-(\operatorname{dim}(Y)-\operatorname{dim}(Z))=\operatorname{dim}(X)+\operatorname{dim}(Z)-n$, which implies that

$$
\operatorname{dim}\left(T_{y}(X \cap Z)\right)=\operatorname{dim}\left(T_{y}(X)\right)+\operatorname{dim}\left(T_{y}(Z)\right)-n
$$

On the other hand, by linear algrbra, $\operatorname{dim}\left(T_{y}(X) \cap T_{y}(Z)\right)=\operatorname{dim}\left(T_{y}(X)\right)+\operatorname{dim}\left(T_{y}(Z)\right)-\operatorname{dim}\left(T_{y}(X)+T_{y}(Z)\right)$ Since $X \pitchfork Z$, we have that $\operatorname{dim}\left(T_{y}(X)+T_{y}(Z)\right)=\operatorname{dim}\left(T_{y}(Y)\right)=n$. Therefore, we have

$$
\operatorname{dim}\left(T_{y}(X) \cap T_{y}(Z)\right)=\operatorname{dim}\left(T_{y}(X)\right)+\operatorname{dim}\left(T_{y}(Z)\right)-n
$$

Hence, $\operatorname{dim}\left(T_{y}(X \cap Z)\right)=\operatorname{dim}\left(T_{y}(X) \cap T_{y}(Z)\right)$ and since $T_{y}(X \cap Z) \subset T_{y}(X) \cap T_{y}(Z)$, we have that $T_{y}(X \cap Z)=$ $T_{y}(X) \cap T_{y}(Z)$.
(G.P 5.6) Suppose that X and Z do not intersect transversally in Y. May $X \cap Z$ still be a manifold? If so, must its codimension still be codim $X+\operatorname{codim} Z$? (Can it be?) Answer with drawings.

Solution. (Drawings see appendix) Yes, $X \cap Z$ can still be a manifold. Consider let X be the x-axis in R^{2}, Z be the x-axis in R^{2}. Both X and Y are manifolds and the intersection $X \cap Z$ is the x-axis, which is still a manifold.

The codimension NOT necessarily $\operatorname{codim} X+\operatorname{codim} Z$. Let $\operatorname{dim}(Y)=n$. Let X, Z be the two orthogonal axes in R^{3} respectively. Then, $\operatorname{codim}(X \cap Z)=3$ while $\operatorname{codim}(X)+\operatorname{codim}(Z)=2+2=4$.

But the codimenstion can still be $\operatorname{codim}(X)+\operatorname{codim}(Z)$. Let X, Z be the two axes in R^{2}, then $\operatorname{codim}(X \cap Z)=2$ and $\operatorname{codim}(X)+\operatorname{codim}(Z)=1+1=2$.
2.(G.P 5.8) For which values of a does the hyperboloid defined by $x^{2}+y^{2}-z^{2}=1$ intersect the sphere $x^{2}+y^{2}+z^{2}=a$ transversally? What does the intersection look like for different values of a ?

Solution. Consult Figure 3.
Clearly $a \geq 0$. The hyperboloid intersects the sphere transversally for $0 \leq a<1$ (vacuously) and $a>1$.
For $0 \leq a<1$ the intersection is the empty set.
For $a=1$ the intersection is the unit circle $x^{2}+y^{2}=1$.
For $a>1$ the intersection is two circles of radius $\sqrt{\frac{1+a}{2}}$ in the $x-y$ plane with centres at $\left(0,0, \pm \sqrt{\frac{a-1}{2}}\right)$.
3. (G.P 6.7) Show that the antipodal map $x \rightarrow-x$ of $S^{k} \rightarrow S^{k}$ is homotopic to the identity if k is odd. Hint: Start off with $k=1$ by using the linear maps defined by

$$
\left(\begin{array}{cc}
\cos \pi t & -\sin \pi t \\
\sin \pi t & \cos \pi t
\end{array}\right)
$$

Solution. For odd n, S^{n} is a submanifold in \mathbb{R}^{n+1} so points on S^{n} can be described as Euclidean $(n+1)$-tuples, $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. Note $n+1$ is even.

Define $R_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as the linear map

$$
\binom{x_{2 i}}{x_{2 i+1}}=\left(\begin{array}{cc}
\cos (\pi t) & -\sin (\pi t) \\
\sin (\pi t) & \cos (\pi t)
\end{array}\right)\binom{x_{2 i}}{x_{2 i+1}}
$$

for $t \in[0,1]$. Clearly for $t=0$ this is equal to the identity map and for $t=1$ the identity map. Furthermore, these are rotation matrices and thus allowing t to span $[0,1]$ smoothly transforms R_{i}, i.e. we can define a homotopy $H_{i}: \mathbb{R}^{2} \times I \rightarrow \mathbb{R}^{2}$ as R_{i}.

Then define a homotopy on S^{n} as

$$
H=H_{0} \times H_{1} \times \cdots \times H_{(n+1) / 2}
$$

i.e. let a rotation operator as defined above act on each pair $\left(x_{i}, x_{i+1}\right.$ for even positive intefers i within the $(n+1)$-tuple. This is a product of smooth functions and thus smooth, and all the conditions above hold for each pair, so this is indeed a homotopy between the identity map and the antipodal map.
4.(G.P 6.10) A deformation of a submanifold Z in Y is smooth homotopy $i_{t}: Z \rightarrow Y$ where i_{0} is the inclusion map $Z \rightarrow Y$ and each i_{t} is an embedding. Thus, $Z_{t}=i_{t}(Z)$ is a smoothly varying submanifold of Y with $Z_{0}=Z$. Show that if Z is compact, then any homotopy i_{t} of its inclusion map is a deformation for small t. Give an counterexample in the noncompact case (Other than the triviality where $\operatorname{dim} Z=\operatorname{dimY}$.)

Solution. The inclusion map $i: Z \rightarrow Y$ is an embedding. Since the embedding is a stable property, and Z is compact, then any homotopy i_{t} of its inclusion map is a deformation for small t.

Counterexample: Consider $Z=\operatorname{Im}(f)$ where $f: R \rightarrow R^{2}$ is the function we defined in class as:

$$
f(x)= \begin{cases}\left(x, \frac{\sin (x)}{x}\right) & x \neq 0 \\ (0,1) & \mathrm{x}=0\end{cases}
$$

It is easy to see this Z is not compact and $\operatorname{dim}(Z)=1 \neq \operatorname{dim}(Y)$. And there exists a homotopy i_{t} such that i_{t} is not embedding. To see this, since the image of f gets arbitrarily close to the x -axis, with small perturbation, the differential will be 0 when taken at the x -axis. Hence, not an embedding.

Dephential Jopology
Homenock 7 - Exter Druwings

6 Figure 1

L : line $x=1$
$5^{1}, L \subset \mathbb{R}^{2}$

Figure 2

μ : point $(0,0)$
Si, $L \subset \mathbb{R}^{2}$

8 Figure 3

$x^{2}+y^{2}+z^{2}=a \quad$ intunction $a=0$ peint \varnothing $0<a<1$ yphre \varnothing $a=1$ yphere 1 circle $a>1$ phore 2 circles

$$
\begin{aligned}
a=1 \quad x^{2}+y^{2}-z^{2} & =1 \\
\& x^{2}+y^{2}+z^{2} & =1 \\
x^{2}+y^{2}-z^{2} & =1 \\
\& x^{2}+y^{2}+z^{2} & =a
\end{aligned} \quad \Longrightarrow x^{2}+y^{2}=1, z=0 .
$$

