Math 141 Homework 7

Yimeng Wang | SID: 3032662700

October 2019

1.(G.P 5.4) Let X and X be transversal submanifolds of Y. Prove that if $y \in X \cap Z$, then

 $T_y(X \cap Z) = T_y(X) \cap T_y(Z)$

Solution. Let dim(Y) = n. Suppose $y \in X \cap Z$, since $X \cap Z \subset X$, we have $T_y(X \cap Z) \subset T_y(X)$. Similarly, we have $T_y(X \cap Z) \subset T_y(Z)$. As a result, $T_y(X \cap Z) \subset T_y(X) \cap T_y(Z)$. Now since X, Z are intersecting manifolds, we have $codim(X \cap Z) = codim(X) + codim(Z)$. In other words, $dim(X \cap Z) = dim(Y) - codim(X) - codim(Z) = dim(Y) - (dim(Y) - dim(X)) - (dim(Y) - dim(Z)) = dim(X) + dim(Z) - n$, which implies that

 $dim(T_y(X \cap Z)) = dim(T_y(X)) + dim(T_y(Z)) - n$

On the other hand, by linear algebra, $dim(T_y(X) \cap T_y(Z)) = dim(T_y(X)) + dim(T_y(Z)) - dim(T_y(X) + T_y(Z))$ Since $X \oplus Z$, we have that $dim(T_y(X) + T_y(Z)) = dim(T_y(Y)) = n$. Therefore, we have

$$\dim(T_u(X) \cap T_u(Z)) = \dim(T_u(X)) + \dim(T_u(Z)) - n$$

Hence, $dim(T_y(X \cap Z)) = dim(T_y(X) \cap T_y(Z))$ and since $T_y(X \cap Z) \subset T_y(X) \cap T_y(Z)$, we have that $T_y(X \cap Z) = T_y(X) \cap T_y(Z)$.

(G.P 5.6) Suppose that X and Z do not intersect transversally in Y. May $X \cap Z$ still be a manifold? If so, must its codimension still be codimX + codimZ? (Can it be?) Answer with drawings.

Solution. (Drawings see appendix) Yes, $X \cap Z$ can still be a manifold. Consider let X be the x-axis in \mathbb{R}^2 , Z be the x-axis in \mathbb{R}^2 . Both X and Y are manifolds and the intersection $X \cap Z$ is the x-axis, which is still a manifold.

The codimension NOT necessarily codimX + codimZ. Let dim(Y) = n. Let X, Z be the two orthogonal axes in \mathbb{R}^3 respectively. Then, $codim(X \cap Z) = 3$ while codim(X) + codim(Z) = 2 + 2 = 4.

But the codimension can still be codim(X) + codim(Z). Let X, Z be the two axes in \mathbb{R}^2 , then $codim(X \cap Z) = 2$ and codim(X) + codim(Z) = 1 + 1 = 2. 2.(G.P 5.8) For which values of a does the hyperboloid defined by $x^2 + y^2 - z^2 = 1$ intersect the sphere $x^2 + y^2 + z^2 = a$ transversally? What does the intersection look like for different values of a?

Solution. Consult Figure 3.

Clearly $a \ge 0$. The hyperboloid intersects the sphere transversally for $0 \le a < 1$ (vacuously) and a > 1.

For $0 \le a < 1$ the intersection is the empty set.

For a = 1 the intersection is the unit circle $x^2 + y^2 = 1$.

For a > 1 the intersection is two circles of radius $\sqrt{\frac{1+a}{2}}$ in the x - y plane with centres at $(0, 0, \pm \sqrt{\frac{a-1}{2}})$.

3. (G.P 6.7) Show that the antipodal map $x \to -x$ of $S^k \to S^k$ is homotopic to the identity if k is odd. Hint: Start off with k = 1 by using the linear maps defined by

$$\begin{pmatrix} \cos\pi t & -\sin\pi t\\ \sin\pi t & \cos\pi t \end{pmatrix}$$

Solution. For odd n, S^n is a submanifold in \mathbb{R}^{n+1} so points on S^n can be described as Euclidean (n+1)-tuples, (x_0, x_1, \ldots, x_n) . Note n+1 is even.

Define $R_i: \mathbb{R}^2 \to \mathbb{R}^2$ as the linear map

$$\begin{pmatrix} x_{2i} \\ x_{2i+1} \end{pmatrix} = \begin{pmatrix} \cos(\pi t) & -\sin(\pi t) \\ \sin(\pi t) & \cos(\pi t) \end{pmatrix} \begin{pmatrix} x_{2i} \\ x_{2i+1} \end{pmatrix}$$

for $t \in [0, 1]$. Clearly for t = 0 this is equal to the identity map and for t = 1 the identity map. Furthermore, these are rotation matrices and thus allowing t to span [0, 1] smoothly transforms R_i , i.e. we can define a homotopy $H_i : \mathbb{R}^2 \times I \to \mathbb{R}^2$ as R_i .

Then define a homotopy on S^n as

$$H = H_0 \times H_1 \times \dots \times H_{(n+1)/2}$$

i.e. let a rotation operator as defined above act on each pair (x_i, x_{i+1}) for even positive intefers i within the (n+1)-tuple. This is a product of smooth functions and thus smooth, and all the conditions above hold for each pair, so this is indeed a homotopy between the identity map and the antipodal map.

4.(G.P 6.10) A deformation of a submanifold Z in Y is smooth homotopy $i_t : Z \to Y$ where i_0 is the inclusion map $Z \to Y$ and each i_t is an embedding. Thus, $Z_t = i_t(Z)$ is a smoothly varying submanifold of Y with $Z_0 = Z$. Show that if Z is compact, then any homotopy i_t of its inclusion map is a deformation for small t. Give an counterexample in the noncompact case (Other than the triviality where $\dim Z = \dim Y$.)

Solution. The inclusion map $i: Z \to Y$ is an embedding. Since the embedding is a stable property, and Z is compact, then any homotopy i_t of its inclusion map is a deformation for small t.

Counterexample: Consider Z = Im(f) where $f: R \to R^2$ is the function we defined in class as:

$$f(x) = \begin{cases} (x, \frac{\sin(x)}{x}) & x \neq 0\\ (0,1) & x = 0 \end{cases}$$

It is easy to see this Z is not compact and $dim(Z) = 1 \neq dim(Y)$. And there exists a homotopy i_t such that i_t is not embedding. To see this, since the image of f gets arbitrarily close to the x-axis, with small perturbation, the differential will be 0 when taken at the x-axis. Hence, not an embedding.

Sphuntial Topology Hommork 7 - Extra Drawings Figure Figure YA Y SANL S.nn L: line x = 1 $5^{1}, L \subset \mathbb{R}^{2}$ p: point (0,0) $s' \perp \in \mathbb{R}^2$ Figure . $X + y^2 + z^2 = a$ interaction 0 point 100

a=1 $x^{2}+y^{2}-z^{2}=1$ $& x^{2}+y^{2}+z^{2}=1 \implies x^{2}+y^{2}=1, z=0$