Math 141 Homework 5

1. GP5, 1 and 2

- 1. (a) By the definition, for an arbitrary point q in \mathbb{R}^n , for any point p in the pre-image of q, $T_qV + d_pA(T_p\mathbb{R}^k) = T_q\mathbb{R}^n$, which in this case is just $V + A(\mathbb{R}^k) = \mathbb{R}^n$, because V is a vector subspace and thus diffeomorphic to a Euclidean space. Thus, these two definitions are equivalent.
 - (b) The formal definition gives us that $T_qV + d_pi(T_pW) = T_q\mathbb{R}^n$ where $i: W \to \mathbb{R}^n$ the inclusion map which is clearly linear. Knowing that these are linear, we can simplify this down to $V + i(W) = \mathbb{R}^n = V + W$. Thus, these two definitions are equivalent.
- 2. (a), (b), (d), (e), (f), (g). I applied result from 1(b) to all of these problems implicitly.
 - (a) Yes, these clearly span \mathbb{R}^3 .
 - (b) Yes, these also span \mathbb{R}^3 since the second plane has z component.
 - (c) No, this is the xy-plane and y axis, which do not span in the z direction.
 - (d) Yes, if $k + l \ge n$. We see that these spaces must hit every index of n which is only possible when $k + l \ge n$.
 - (e) Yes, only if $\max(k, l) = n$. The minimal dimension is covered by the larger, so consider if $\mathbb{R}^k \times \{0\}$ spans \mathbb{R}^n which is only true if k = n and the spaces are equal. This is only possible depending on how we are considering the $\{0\}$ notation (if it must be nontrivial, then this is never transversal).
 - (f) Yes, because the first gives it half of the dimension and span, whereas the diagonal contributes the other half. Using linear algebra, you can separate them into (d).
 - (g) Yes, the dimensions add up correctly $(n + 2n(n-1)/2 = n^2)$, and they are independent (the only intersection is zero-matrix that equals its negative), so they must span \mathbb{R}^{n^2} .
- **2.** GP6, 1 and 2. You may use the function ρ in the hint for problem 1 as given.
 - 1. Using ρ , a function we created in a previous homework using fraction of integrals, from [0, 1/4], the smooth function ρ would give us $\rho(t) = 0$, and from [3/4, 1], $\rho(t) = 1$. Now, we can just take F a homotopy, which exists since f_0 and f_1 are given to be homotopic. Considering $\tilde{F}(x,t) = F(x,\rho(t))$, we have that $\tilde{F}(x,t) = f_0(x)$ for $t \in [0, 1/4]$ since the actions are suppressed by $\rho(t) = 0$, and also $\tilde{F}(x,t) = f_1(x)$ for $t \in [3/4, 1]$ since $\rho(t) = 1$. \tilde{F} is still a smooth map since it is the composition of smooth maps (it is $F \circ (Id \times \rho)$).
 - 2. Both reflexivity and symmetry are clear. Transitivity: If $f \sim g$ and $g \sim h$, then there exist homotopies $F: X \times I \to Y$ and $G: X \times I \to Y$. Note that the domain and ranges of these functions must be the same for them to be homotopic, so we have labelled X to be the domain and Y to be the range. Now, define a homotopy H using problem 1 such that $H(x,t) = \tilde{F}(x,t)$ for $t \in [0,1]$ and $\tilde{G}(x,t-1)$ for $t \in [1,2]$. Now, to adjust for the larger interval, consider $\tilde{H} = H(x,t/2)$. $\tilde{H}(x,1/2) = H(x,1) = F(x,1) = g = G(x,0)$ so this is continuous. Additionally, $\tilde{H}(x,0) = F(x,0) = f$ and $\tilde{H}(x,1) = G(x,1) = h$. Thus, there is a homotopy between f and h so $f \sim h$.