
Math 141 Homework 5

Problem 1. GP4, 9. Show that the orthogonal group O(n) is compact.

Solution: From real analysis, being compact in Euclidean space is equivalent to being closed and bounded.
We have shown in class that O(n) is just the pre-image of the identity for the function that sends M to
MMT , and since the identity is closed, O(n) is as well. We also can show that O(n) is bounded. Consider
‖M‖ for any M ∈ O(n), by definition it is
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because M is orthogonal. Thus, O(n) is bound by the value 1.

GP4, 10. Verify that the tangent space to O(n) at the identity matrix I is the vector space of skew
symmetric n× n matrices – that is, matrices A satisfying At = −A.

Solution: Let f : M →MMT . From class, we have the following series of calculations:
(I + εM) ∗ (I + εM)T = I + ε(M + MT ) + O(ε2), so dfI(M) = M + MT . By the proposition in the book
and by the fact we know that O(n) is the preimage of the identity under f , we have that the Kernel of this
derivative is the tangent space of O(n), and that is exactly matrices such that M+MT = 0 ⇐⇒ MT = −M .

Problem 2. GP4, 11
(a) The n×n matrices with determinant +1 form a group denoted SL(n). Prove that SL(n) is a submanifold
of M(n) and thus is a Lie group.
(b) Check that the tangent space to SL(n) at the identity matrix consists of all matrices with trace equal
to zero.

Solution:
(a) We will show this by determining that SLn is the pre-image of the regular value 1 under the determi-
nant function. The differential of the determinant function is a linear map into R, and thus as long as the
differential is not the 0 function, it must be surjective. To confirm that the differential of the determinant is
never the 0 function, let us consider d(det)M (A) for an arbitrary matrix M . Assume that det(A) 6= 0, then
det(M + εA) ≥ det(M) + εdet(A) 6= det(M) for ε > 0, and thus, the derivative is not 0. We can conclude
that 1 is a regular value, and by the Pre-image Theorem, we have that SLn is indeed a submanifold.

(b) From class, we have that dI(det)(M) = Tr(M). By the proposition in the section 4, and knowing
that SL(n) is the pre-image of 1 under det, we have: TI(SL(n)) = Ker(d(det)I) = {M : Tr(M) = 0}.

Problem 3. Recall that a Lie group is a subgroup of some GLn which is a manifold. Suppose f : G→ H is a
map of Lie groups which is both a smooth map and a homomorphism, i.e. such that f(g1 ·g2) = f(g1) ·f(g2).
Show that f is a (submersion, immersion, local diffeomorphism) if and only if def (the differential at the
identity) is, respectively, a (surjective, injective, bijective) linear map. Give an example of a map of connected
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Lie groups which is a local diffeomorphism but not a diffeomorphism. (Hint: start by showing that if G is
abelian, such as SO(2), then the map g 7→ g2 is a homomorphism. More interesting non-abelian examples
also exist.)
Solution. Let f : G → H be a map of Lie groups which is both a smooth map and a homomorphism, i.e.
such that f(g1 · g2) = f(g1) · f(g2), and f is a submersion. Then def is surjective by definition, similarly for
immersion and injectivity.

Now suppose f is smooth and a homomorphism, as well as def being surjective. Then we can locally
draw the diagram, for neighbourhoods NeG of eG in G annd NeG of f(eG) = eH in H,

NeG NeH

Rn2 Rm2

f

φ

def

ψ

for n ≥ m for surjectivity.
Note that left translation Lx in G is smooth, as it is a restriction of the smooth multiplication mapµ,

Lx = µ|{g}×G. Furthermore, for any g1, g2 ∈ G,

gg1 = gg2 ⇒ g−1gg1 = g−1gg2 ⇒ g1 = g2

so Lx is injective. Lastly, for any g3 ∈ G,

g3 = g(g−1g3)

and thus Lx is surjective. Therefore Lx is bijective, and a diffeomorphism.
For any neighbourhood Ng in G of some other point g ∈ G, by left translation by g−1 we can map this

neighbourhood to a neighbourhood of e under the diffeomorphic left translation. Thus we can construct
a diffeomorphism φ2 between the neighbourhoods Ng and NeG and similarly, as H is also a Lie group, a
diffeomorphism ψ2 between f(Ng) = NeH by homomorphism, and NeH . Thus the composition φ−12 ◦ φ−1 ◦
def ◦ ψ ◦ ψ2 is surjective (all diffeomorphisms, def surjective) and thus f : Ng → Nf(g) is surjective, at
which point by constructing the standard commutative diagram with diffeomorphic parametrisations from
the tangent space, we see that dgf must also be surjective.

Similarly, replacing the condition of surjectivity by injectivity, we can construct all of these diffeomor-
phisms (which are injective by definition) and deduce dgf must be injective at any point, i.e. f an immersion.

Lastly, local diffeomorphisms are locally bijective by definition. For the converse, we have shown surjec-
tivity and injectivity to imply submersion and immersion respectively, hence bijectivity at e implies local
injectivity and surjectivity of the derivative at any point, i.e. bijectivity.

Let sq : SO(2) → SO(2) be the squaring map on the commutative (a.k.a. Abelian) group SO(2) of
rotations of the plane. Then for M,N ∈ SO(2) we have sq(MN) := (MN)2 = MNMN = M2N2 =
sq(M)sq(N), so this map is a homomorphism. As we have seen previously, this map is a local diffeomorphism
at the identity, therefore (since it is a homomorphism), a local diffeomorphism everywhere. On the other
hand, it is not a bijection, since

sq

(
1 0
0 1

)
= sq

(
−1 0
0 −1

)
= I.
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Problem 4.

1. Draw or write down two maps X → R with different but finite numbers of critical values, for two
manifolds X diffeomorphic to the sphere. Draw a picture of the map and the pre-image of each critical
value, and compute the Euler characteristic of each resulting one-dimensional manifold (defined as
V −E). Check that in each case the Euler characteristics sum up to 2, which is the Euler characteristic
of S2.

2. Do the same thing with X diffeomorphic to the torus, S1 × S1.

Hint for drawing maps to R : start by drawing a shape in R3 which can be smoothly deformed to a
sphere or a torus, then use projection to the z-axis to define the map.

Solution.

(a) See picture below. Correction to second computation: should be 4 (from singleton points) −2
(from figure eights) = 2
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(b) See Picture below. Correction to computations: first one should be 2 (from singleton points) −2
(from figure 8’s) = 0 and second one should similarly be 4− 4 = 0.
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