Math 141 Homework 5

Problem 1. GP4, 9. Show that the orthogonal group $O(n)$ is compact.
Solution: From real analysis, being compact in Euclidean space is equivalent to being closed and bounded. We have shown in class that $O(n)$ is just the pre-image of the identity for the function that sends M to $M M^{T}$, and since the identity is closed, $O(n)$ is as well. We also can show that $O(n)$ is bounded. Consider $\|M\|$ for any $M \in O(n)$, by definition it is

$$
\sqrt{\frac{1}{n} \sum_{i, j}\left(M_{i j}\right)^{2}}=\sqrt{\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{n} M_{i j}^{2}}=\sqrt{\frac{1}{n} \sum_{j=1}^{n} 1}=\sqrt{\frac{1}{n} * n}=1
$$

because M is orthogonal. Thus, $O(n)$ is bound by the value 1 .
GP4, 10. Verify that the tangent space to $O(n)$ at the identity matrix I is the vector space of skew symmetric $n \times n$ matrices - that is, matrices A satisfying $A^{t}=-A$.

Solution: Let $f: M \rightarrow M M^{T}$. From class, we have the following series of calculations: $(I+\varepsilon M) *(I+\varepsilon M)^{T}=I+\varepsilon\left(M+M^{T}\right)+O\left(\varepsilon^{2}\right)$, so $d f_{I}(M)=M+M^{T}$. By the proposition in the book and by the fact we know that $O(n)$ is the preimage of the identity under f, we have that the Kernel of this derivative is the tangent space of $O(n)$, and that is exactly matrices such that $M+M^{T}=0 \Longleftrightarrow M^{T}=-M$.

Problem 2. GP4, 11
(a) The $n \times n$ matrices with determinant +1 form a group denoted $S L(n)$. Prove that $S L(n)$ is a submanifold of $M(n)$ and thus is a Lie group.
(b) Check that the tangent space to $S L(n)$ at the identity matrix consists of all matrices with trace equal to zero.

Solution:

(a) We will show this by determining that $S L_{n}$ is the pre-image of the regular value 1 under the determinant function. The differential of the determinant function is a linear map into \mathbb{R}, and thus as long as the differential is not the 0 function, it must be surjective. To confirm that the differential of the determinant is never the 0 function, let us consider $d(\operatorname{det})_{M}(A)$ for an arbitrary matrix M. Assume that $\operatorname{det}(A) \neq 0$, then $\operatorname{det}(M+\varepsilon A) \geq \operatorname{det}(M)+\varepsilon \operatorname{det}(A) \neq \operatorname{det}(M)$ for $\varepsilon>0$, and thus, the derivative is not 0 . We can conclude that 1 is a regular value, and by the Pre-image Theorem, we have that $S L_{n}$ is indeed a submanifold.
(b) From class, we have that $d_{I}(\operatorname{det})(M)=\operatorname{Tr}(M)$. By the proposition in the section 4, and knowing that $S L(n)$ is the pre-image of 1 under det, we have: $T_{I}(S L(n))=\operatorname{Ker}\left(d(\operatorname{det})_{I}\right)=\{M: \operatorname{Tr}(M)=0\}$.

Problem 3. Recall that a Lie group is a subgroup of some $G L_{n}$ which is a manifold. Suppose $f: G \rightarrow H$ is a map of Lie groups which is both a smooth map and a homomorphism, i.e. such that $f\left(g_{1} \cdot g_{2}\right)=f\left(g_{1}\right) \cdot f\left(g_{2}\right)$. Show that f is a (submersion, immersion, local diffeomorphism) if and only if $d_{e} f$ (the differential at the identity) is, respectively, a (surjective, injective, bijective) linear map. Give an example of a map of connected

Lie groups which is a local diffeomorphism but not a diffeomorphism. (Hint: start by showing that if G is abelian, such as $S O(2)$, then the map $g \mapsto g^{2}$ is a homomorphism. More interesting non-abelian examples also exist.)
Solution. Let $f: G \rightarrow H$ be a map of Lie groups which is both a smooth map and a homomorphism, i.e. such that $f\left(g_{1} \cdot g_{2}\right)=f\left(g_{1}\right) \cdot f\left(g_{2}\right)$, and f is a submersion. Then $d_{e} f$ is surjective by definition, similarly for immersion and injectivity.

Now suppose f is smooth and a homomorphism, as well as $d_{e} f$ being surjective. Then we can locally draw the diagram, for neighbourhoods $N_{e_{G}}$ of e_{G} in G annd $N_{e_{G}}$ of $f\left(e_{G}\right)=e_{H}$ in H,

for $n \geq m$ for surjectivity.
Note that left translation L_{x} in G is smooth, as it is a restriction of the smooth multiplication map μ, $L_{x}=\left.\mu\right|_{\{g\} \times G}$. Furthermore, for any $g_{1}, g_{2} \in G$,

$$
g g_{1}=g g_{2} \Rightarrow g^{-1} g g_{1}=g^{-1} g g_{2} \Rightarrow g_{1}=g_{2}
$$

so L_{x} is injective. Lastly, for any $g_{3} \in G$,

$$
g_{3}=g\left(g^{-1} g_{3}\right)
$$

and thus L_{x} is surjective. Therefore L_{x} is bijective, and a diffeomorphism.
For any neighbourhood N_{g} in G of some other point $g \in G$, by left translation by g^{-1} we can map this neighbourhood to a neighbourhood of e under the diffeomorphic left translation. Thus we can construct a diffeomorphism ϕ_{2} between the neighbourhoods N_{g} and $N_{e_{G}}$ and similarly, as H is also a Lie group, a diffeomorphism ψ_{2} between $f\left(N_{g}\right)=N_{e_{H}}$ by homomorphism, and $N_{e_{H}}$. Thus the composition $\phi_{2}^{-1} \circ \phi^{-1} \circ$ $d_{e} f \circ \psi \circ \psi_{2}$ is surjective (all diffeomorphisms, $d_{e} f$ surjective) and thus $f: N_{g} \rightarrow N_{f(g)}$ is surjective, at which point by constructing the standard commutative diagram with diffeomorphic parametrisations from the tangent space, we see that $d_{g} f$ must also be surjective.

Similarly, replacing the condition of surjectivity by injectivity, we can construct all of these diffeomorphisms (which are injective by definition) and deduce $d_{g} f$ must be injective at any point, i.e. f an immersion.

Lastly, local diffeomorphisms are locally bijective by definition. For the converse, we have shown surjectivity and injectivity to imply submersion and immersion respectively, hence bijectivity at e implies local injectivity and surjectivity of the derivative at any point, i.e. bijectivity.

Let $s q: S O(2) \rightarrow S O(2)$ be the squaring map on the commutative (a.k.a. Abelian) group $S O(2)$ of rotations of the plane. Then for $M, N \in S O(2)$ we have $s q(M N):=(M N)^{2}=M N M N=M^{2} N^{2}=$ $s q(M) s q(N)$, so this map is a homomorphism. As we have seen previously, this map is a local diffeomorphism at the identity, therefore (since it is a homomorphism), a local diffeomorphism everywhere. On the other hand, it is not a bijection, since

$$
s q\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=s q\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=I .
$$

Problem 4.

1. Draw or write down two maps $X \rightarrow \mathbb{R}$ with different but finite numbers of critical values, for two manifolds X diffeomorphic to the sphere. Draw a picture of the map and the pre-image of each critical value, and compute the Euler characteristic of each resulting one-dimensional manifold (defined as $V-E)$. Check that in each case the Euler characteristics sum up to 2, which is the Euler characteristic of S^{2}.
2. Do the same thing with X diffeomorphic to the torus, $S^{1} \times S^{1}$.

Hint for drawing maps to \mathbb{R} : start by drawing a shape in \mathbb{R}^{3} which can be smoothly deformed to a sphere or a torus, then use projection to the z-axis to define the map.

Solution.

(a) See picture below. Correction to second computation: should be 4 (from singleton points) - 2 $($ from figure eights $)=2$

(b) See Picture below. Correction to computations: first one should be 2 (from singleton points) - 2 (from figure 8 's) $=0$ and second one should similarly be $4-4=0$.

