Math 141 Homework 4

October 6, 2019

1. (a) From Exercise 9 in Section 2, we recall

$$
d(f \times g)_{(x, y)}=d f_{x} \times d g_{y}
$$

Therefore if $d(f \times g)_{(x, y)}(a, b)=0$, then

$$
d f_{x}(a)=0, \quad d g_{y}(b)=0 .
$$

As both f and g are immersions, this implies that $a=0$ and $b=0$. In other words, $d(f \times g)_{(x, y)}$ is injective. Hence $f \times g$ is an immersion.
(b) Suppose $d(g \circ f)_{x}(a)=d g_{f(x)} \circ d f_{x}(a)=0$. If $a \neq 0$, then $d f_{x}(a) \neq 0$ as f is an immersion. However, by the same reasoning, this implies $d g_{f(x)} \circ d f_{x}(a) \neq 0$. Hence $d(g \circ f)_{x}(a)=0$ only if $a=0$, implying that $d(g \circ f)_{x}$ is injective. Because our choice of x was arbitrary, we conclude that $g \circ f$ is an immersion.
(c) Suppose $f: X \rightarrow Y$ and Z is a submanifold of X. Denote $\iota: Z \rightarrow X$ as the inclusion map $z \mapsto z$, and let $g: Z \rightarrow Y$ be the restriction of f to Z. By the chain rule, we note

$$
d g_{z}=d f_{z} \circ d \iota_{z}=d f_{z}(I)=d f_{z}
$$

for all $z \in Z$. Hence $d g_{z}$ is injective, and g is a immersion.
(d) Recall $T_{x}(X)$ and $T_{f}(x)(Y)$ have the same dimensions as X and Y. Thus $d f_{x}$ is an injective mapping between vector spaces of equal dimension, i.e. $d f_{x}$ is a isomorphism. From the inverse funcion theorem, we conclude that f is a local diffeomorphism for all $x \in X$.
2. Denote the map as $f=\left(f_{1}, f_{2}\right)$. To show f is injective, we note $f_{1}(t)+f_{2}(t)=e^{t}$. As e^{t} is different for different t, this implies $\left(f_{1}(t), f_{2}(t)\right)$ is different for different t.
Now note

$$
d f_{t}=\left(\frac{e^{t}-e^{-t}}{2}, \frac{e^{t}+e^{-t}}{2}\right)=\left(f_{2}, f_{1}\right)
$$

From the previous reasoning, we conclude that $d f_{t}$ is injective, hence f is an immersion. It remains to show that f is proper. By Heine-Borel, compact subsets of \mathbb{R}^{n} are precisely those that are closed and bounded. As f is continuous, thus the preimage of closed sets are closed. Hence it suffices to show that the preimages of bounded sets are bounded.

Suppose

$$
f_{1}(t)<a
$$

Note this implies

$$
e^{t}<2 a, \quad e^{-t}<2 a
$$

i.e. $|t|<\ln (2 a)$, which is a bounded set. As any bounded subset of \mathbb{R}^{2} is contained in set $(-\infty, a) \times \mathbb{R}$ for some $a \in \mathbb{R}$, thus the preimage via f of any bounded set is bounded.
Having shown that f is an embedding, we observe that

$$
f_{1}(t)^{2}-f_{2}(t)^{2}=1
$$

and thus the image of f is contained in the hyperbola $x^{2}-y^{2}=1$. Furthermore, by the AM-GM inequality, we conclude

$$
f_{1}(t) \geq 1, \quad \text { with equality when } e^{t}=e^{-t} .
$$

Also, $f_{1}(t)$ can clearly can arbitrarily large. As $f_{1}(t)$ is continuous, this implies that $f_{1}(t)$ can achieve (and only achieve) any value ≥ 1. Finally, we note

$$
f(-t)=\left(f_{1}(-t), f_{2}(-t)\right)=\left(f_{1}(t),-f_{2}(t)\right)
$$

so for each $x=f_{1}(t)$, there are two possible y values (if $y \neq 0$) in the image. From these facts, we conclude that the image of f are precisely the points on the hyperbola $x^{2}-y^{2}=1$ with $x \geq 1$, which is one nappe.
3. GP4: 1,2 .

1 Suppose X is a k-dimensional manifold, and Y is an l-dimensional manifold. Let $x \in U$ be arbitrarily picked. It suffices to show that some open neighborhood (contained in U) of x in X maps to an open set in Y.
Choose a chart $\phi: V \rightarrow X$ that parameterizes an open neighborhood of x, and a chart $\psi: W \rightarrow Y$ that parameterizes an open neighborhood of $f(x)$. By the Local Submersion Theorem, we can assume without the loss of generality that $\phi(0)=x$, $\psi(0)=f(x)$. and $\psi^{-1} \circ f \circ \phi$ is the canonical submersion π.
Furthermore, we can assume (without loss of generality) that V is a basis element of the topology of \mathbb{R}^{k} and $f(V) \subset U$ (both can be done by shrinking V). Then $\pi(V)$ is a basis element of the topology of \mathbb{R}^{l}. As ψ is a diffeomorphism, we conclude that

$$
\psi \circ \pi(V)
$$

is open in Y, i.e.

$$
f(\phi(V))
$$

is open in Y, which is what we set out to prove.
2 (a) From the previous problem, we note $f(X)$ is open in Y. However, we recall the that continuous images of compact spaces are compact, hence $f(X)$ is compact. As compactness is independent of ambient space, this implies $f(X)$ is compact for $\mathbb{R}^{n} \supset Y$, i.e. $f(X)$ is closed in \mathbb{R}^{n}. Hence $f(X)$ is also closed in Y. As $f(X)$ is both open and closed, and Y is connected, this implies that $f(X)=Y$ or $f(X)=\emptyset$, the latter of which is impossible.
(b) As Euclidean spaces are connected, we conclude that any submersion of a compact manifold into an Euclidean space is surjective. However, this implies that the continuous image of a compact manifold is an Euclidean space, which is a contradiction as Euclidean spaces are not compact.

4. GP4: 3,5 .

3 Note $f: t \mapsto\left(t, t^{2}, t^{3}\right)$ and

$$
d f_{t}=\left(1,2 t, 3 t^{2}\right)
$$

are both injective. Note as f is continuous, it takes the preimages of closed sets to closed sets. Furthermore, suppose some set $S \subset f(\mathbb{R})$ is bounded. Then there exists $a<b$ such that

$$
S \subset X=((a, b) \times \mathbb{R} \times \mathbb{R}) \cap f(\mathbb{R})
$$

Note $f^{-1}(X)=(a, b)$, which is bounded. Thus the preimages of bounded sets are bounded, and we conclude (by Heine-Borel) that f is proper. Hence f is an embedding.
Define $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
g(a, b, c)=a^{2}-b, \quad g(a, b, c)=a b-c .
$$

Clearly $f(\mathbb{R})=g^{-1}(0) \cap h^{-1}(0)$. To show that f and g are independent, we note

$$
d g_{(a, b, c)}=(2 a,-1,0), \quad d h_{(a, b, c)}=(b, a,-1) .
$$

A comparsion of the third coordinate tells us that one will never be a multiple of the other, so g and h are independent on all of \mathbb{R}^{3}.
5 We observe

$$
d f_{(x, y, z)}=(2 x, 2 y,-2 z)
$$

which is surjective unless $x=y=z=0$. Thus every value of \mathbb{R} is a critical value except 0 .
Suppose a and b are of the same sign, i.e. $a / b>0$. Consider the diffeomorphic smooth map $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
g(x, y, z)=(x n, y n, z n), \quad n=\sqrt{\frac{a}{b}} .
$$

Note $g\left(f^{-1}(b)\right) \subset f^{-1}(a)$ and $g^{-1}\left(f^{-1}(a)\right) \subset f^{-1}(b)$, hence $g\left(f^{-1}(a)\right)=f^{-1}(b)$. As diffeomorphisms restricted to smaller domains are still diffeomorphisms, we conclude that $f^{-1}(a)$ is diffeomorphic to $f^{-1}(b)$.
Pictorical Description. For positive a, the manifold $f^{-1}(a)$ is shaped like an hourglass centered at the origin. As a approaches 0 , the neck of the hourglass gets thinner until the set $f^{-1}(0)$ is just two oppositive facing cones whose tips touch at the origin. When a becomes negative, $f^{-1}(a)$ becomes a disconnected manifold (the two cones separate from each other and the tips smooth out).
5. GP4: 12, 13.

12 Note the determinant function can be rewritten as a mapping between manifolds $f: \mathbb{R}^{4} \backslash\{0\} \rightarrow \mathbb{R}$ given by

$$
f(a, b, c, d)=a c-b d
$$

Note

$$
d f_{(a, b, c, d)}=(c,-d, a,-b)
$$

is always surjective (as not all $a, b, c, d=0$), implying that f is a submersion. In particular, this implies that any value is a regular value. Applying the preimage theorem, we conclude that $f^{-1}(0)$ is a submanifold. However, this is precisely the nonzero noninvertible matrices, i.e. the matrices of rank 1. Therefore, the matrices of rank 1 form a submanifold.
13 We first concern ourselves with the union of manifolds.
Lemma 1. The union of manifolds of the same dimension

$$
X=\bigcup_{i \in I} X_{i}
$$

is a manifold if for every $x \in X$, there exists an X_{i} such that a neighborhood N of x in X is a neighborhood of x in X_{i}.
Proof. Choose a parameterization about x in X_{i} such that the parameterization maps into N. This chart is also a chart for X. As we can do this for every $x \in X$, thus X is a manifold.
Lemma 2. Every $m \times n$ matrix with rank r has a $r \times r$ nonsingular minor.
Proof. Suppose our matrix is $\left(a_{i j}\right)$ where $1 \leq i \leq m$ and $1 \leq j \leq n$. Choose linearly independent rows $i_{1}, i_{2}, \ldots i_{r}$ and linearly independent columns $j_{1}, j_{2}, \ldots, j_{r}$. Then the minor $\left(a_{i j}\right)$ where $i \in\left\{i_{1}, \ldots, i_{r}\right\}$ and $j \in\left\{j_{1}, \ldots, j_{r}\right\}$ is invertible.
Back to Problem. However, such a minor can be found anywhere in a $m \times n$ matrix of rank r. If $I \subset[1, m]$ and $J \subset[1, n]$ are both sets of r integers, we denote $M_{I J}$ as all the $m \times n$ matrices such that

$$
\left(a_{i j}\right), \quad i \in I, \quad j \in J
$$

is an invertible minor. Then the union

$$
\bigcup_{I, J} M_{I, J}
$$

consists of all matrices that have some $r \times r$ nonsingular minor.
Lemma 3. Each $M_{I J}$ is an open set.
Proof. Define f to be the map that computes the determinant of the minor

$$
\left(a_{i j}\right), \quad i \in I, \quad j \in J .
$$

Then $M_{I J}=f^{-1}(\mathbb{R} \backslash\{0\})$. As f is a polynomial function of the entries of an $m \times n$ matrix, it is continuous and thus takes the preimages of open sets to open sets.
Back to Problem. Now we take into account the book's hint. Consider the matrices whose upper right $r \times r$ minor is nonsingular, i.e. $M_{[1, r][1, r]}$. We use the book's notation and represent these matrices as

$$
\left(\begin{array}{ll}
B & C \\
D & E
\end{array}\right) .
$$

Then if we post mulitply by a nonsingular matrix

$$
\left(\begin{array}{cc}
I & -B^{-1} C \\
0 & I
\end{array}\right)
$$

we get the product

$$
\left(\begin{array}{cc}
B & 0 \\
D & E-D B^{-1} C .
\end{array}\right)
$$

If our original matrix has rank r, then so does our final matrix, and $E-D B^{-1} C=0$. Conversely, suppose $E-D B^{-1} C=0$. Then our product matrix has rank r, and hence so does the orignal matrix. Therefore, the matrices in $M_{[1, r][1, r]}$ with rank r are precisely those where $E-D B^{-1} C=0$. We can rewrite

$$
E-D B^{-1} C=\left(\begin{array}{cccc}
g_{11} & g_{12} & \ldots & g_{1(n-r)} \\
g_{21} & g_{22} & \ldots & g_{2(n-r)} \\
\cdots & \cdots & \cdots & \cdots \\
g_{(m-r) 1} & \cdots & \cdots & g_{(m-r)(n-r)}
\end{array}\right)=0
$$

where each $g_{i j}$ is some polynomial function on the entries of matrices in $M_{[1, r][1, r]}$. Note each $g_{i j}$ is independent from the others because each $g_{i j}$ uniquely takes the $i j$-th element in E to 1 and every other entry in E to zero. Hence the set of matrices of rank r in $M_{[1, r][1, r]}$ (which we denote as $\left.S_{[1, r][1, r]}\right)$ can be cut out by $(m-r)(n-r)$ independent functions. Thus $S_{[1, r][1, r]}$ is a smooth manifold of codimenison ($m-$ $r)(n-r)$.
Loop. By repeating the logic above for each set $M_{I J}$ in turn (with computational differences depending on where the minor is located), we note that each $S_{I J} \subset M_{I J}$ is a manifold of codimension $(m-r)(n-r)$.
Finale. We claim

$$
S=\bigcup_{I, J} S_{I J}
$$

is a manifold. For any $x \in S_{I J}$, we note $S \cap M_{I J}$ is a open neighborhood of x in S (Lemma 3). However,

$$
S \cap M_{I J}=S_{I J} .
$$

Hence by Lemma 1, we conclude S is a manifold. By Lemma 2 and the definition of $S_{I J}$, we deduce that S is the set of all matrices of rank r. As it is the finite union of submanifolds with codimension $(m-r)(n-r)$, it itself has codimension $(m-r)(n-r)$.

