
Math 141 Homework 4

October 6, 2019

1. (a) From Exercise 9 in Section 2, we recall

d(f × g)(x,y) = dfx × dgy.

Therefore if d(f × g)(x,y)(a, b) = 0, then

dfx(a) = 0, dgy(b) = 0.

As both f and g are immersions, this implies that a = 0 and b = 0. In other words,
d(f × g)(x,y) is injective. Hence f × g is an immersion.

(b) Suppose d(g ◦ f)x(a) = dgf(x) ◦ dfx(a) = 0. If a 6= 0, then dfx(a) 6= 0 as f is an
immersion. However, by the same reasoning, this implies dgf(x) ◦ dfx(a) 6= 0. Hence
d(g◦f)x(a) = 0 only if a = 0, implying that d(g◦f)x is injective. Because our choice
of x was arbitrary, we conclude that g ◦ f is an immersion.

(c) Suppose f : X → Y and Z is a submanifold of X. Denote ι : Z → X as the inclusion
map z 7→ z, and let g : Z → Y be the restriction of f to Z. By the chain rule, we
note

dgz = dfz ◦ dιz = dfz(I) = dfz

for all z ∈ Z. Hence dgz is injective, and g is a immersion.

(d) Recall Tx(X) and Tf (x)(Y ) have the same dimensions as X and Y . Thus dfx is an in-
jective mapping between vector spaces of equal dimension, i.e. dfx is a isomorphism.
From the inverse funcion theorem, we conclude that f is a local diffeomorphism for
all x ∈ X.

2. Denote the map as f = (f1, f2). To show f is injective, we note f1(t) + f2(t) = et. As et

is different for different t, this implies (f1(t), f2(t)) is different for different t.

Now note

dft =
(et − e−t

2
,
et + e−t

2

)
= (f2, f1).

From the previous reasoning, we conclude that dft is injective, hence f is an immersion.

It remains to show that f is proper. By Heine-Borel, compact subsets of Rn are precisely
those that are closed and bounded. As f is continuous, thus the preimage of closed sets
are closed. Hence it suffices to show that the preimages of bounded sets are bounded.

Suppose
f1(t) < a.

Note this implies
et < 2a, e−t < 2a
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i.e. |t| < ln(2a), which is a bounded set. As any bounded subset of R2 is contained in set
(−∞, a)× R for some a ∈ R, thus the preimage via f of any bounded set is bounded.

Having shown that f is an embedding, we observe that

f1(t)
2 − f2(t)2 = 1

and thus the image of f is contained in the hyperbola x2 − y2 = 1. Furthermore, by the
AM-GM inequality, we conclude

f1(t) ≥ 1, with equality when et = e−t.

Also, f1(t) can clearly can arbitrarily large. As f1(t) is continuous, this implies that f1(t)
can achieve (and only achieve) any value ≥ 1. Finally, we note

f(−t) = (f1(−t), f2(−t)) = (f1(t),−f2(t))

so for each x = f1(t), there are two possible y values (if y 6= 0) in the image. From
these facts, we conclude that the image of f are precisely the points on the hyperbola
x2 − y2 = 1 with x ≥ 1, which is one nappe.

3. GP4: 1,2.

1 Suppose X is a k-dimensional manifold, and Y is an l-dimensional manifold. Let
x ∈ U be arbitrarily picked. It suffices to show that some open neighborhood
(contained in U) of x in X maps to an open set in Y.

Choose a chart φ : V → X that parameterizes an open neighborhood of x, and a
chart ψ : W → Y that parameterizes an open neighborhood of f(x). By the Local
Submersion Theorem, we can assume without the loss of generality that φ(0) = x,
ψ(0) = f(x). and ψ−1 ◦ f ◦ φ is the canonical submersion π.

Furthermore, we can assume (without loss of generality) that V is a basis element
of the topology of Rk and f(V ) ⊂ U (both can be done by shrinking V ). Then π(V )
is a basis element of the topology of Rl. As ψ is a diffeomorphism, we conclude that

ψ ◦ π(V )

is open in Y , i.e.
f(φ(V ))

is open in Y , which is what we set out to prove.

2 (a) From the previous problem, we note f(X) is open in Y. However, we recall the
that continuous images of compact spaces are compact, hence f(X) is compact.
As compactness is independent of ambient space, this implies f(X) is compact
for Rn ⊃ Y , i.e. f(X) is closed in Rn. Hence f(X) is also closed in Y . As f(X)
is both open and closed, and Y is connected, this implies that f(X) = Y or
f(X) = ∅, the latter of which is impossible.

(b) As Euclidean spaces are connected, we conclude that any submersion of a com-
pact manifold into an Euclidean space is surjective. However, this implies that
the continuous image of a compact manifold is an Euclidean space, which is a
contradiction as Euclidean spaces are not compact.
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4. GP4: 3, 5.

3 Note f : t 7→ (t, t2, t3) and
dft = (1, 2t, 3t2)

are both injective. Note as f is continuous, it takes the preimages of closed sets to
closed sets. Furthermore, suppose some set S ⊂ f(R) is bounded. Then there exists
a < b such that

S ⊂ X = ((a, b)× R× R) ∩ f(R).

Note f−1(X) = (a, b), which is bounded. Thus the preimages of bounded sets
are bounded, and we conclude (by Heine-Borel) that f is proper. Hence f is an
embedding.

Define g : R3 → R and h : R3 → R given by

g(a, b, c) = a2 − b, g(a, b, c) = ab− c.

Clearly f(R) = g−1(0) ∩ h−1(0). To show that f and g are independent, we note

dg(a,b,c) = (2a,−1, 0), dh(a,b,c) = (b, a,−1).

A comparsion of the third coordinate tells us that one will never be a multiple of
the other, so g and h are independent on all of R3.

5 We observe
df(x,y,z) = (2x, 2y,−2z)

which is surjective unless x = y = z = 0. Thus every value of R is a critical value
except 0.

Suppose a and b are of the same sign, i.e. a/b > 0. Consider the diffeomorphic
smooth map g : R3 → R3 given by

g(x, y, z) = (xn, yn, zn), n =

√
a

b
.

Note g(f−1(b)) ⊂ f−1(a) and g−1(f−1(a)) ⊂ f−1(b), hence g(f−1(a)) = f−1(b). As
diffeomorphisms restricted to smaller domains are still diffeomorphisms, we conclude
that f−1(a) is diffeomorphic to f−1(b).

Pictorical Description. For positive a, the manifold f−1(a) is shaped like an
hourglass centered at the origin. As a approaches 0, the neck of the hourglass gets
thinner until the set f−1(0) is just two oppositive facing cones whose tips touch at
the origin. When a becomes negative, f−1(a) becomes a disconnected manifold (the
two cones separate from each other and the tips smooth out).

5. GP4: 12, 13.

12 Note the determinant function can be rewritten as a mapping between manifolds
f : R4\{0} → R given by

f(a, b, c, d) = ac− bd.
Note

df(a,b,c,d) = (c,−d, a,−b)
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is always surjective (as not all a, b, c, d = 0), implying that f is a submersion. In
particular, this implies that any value is a regular value. Applying the preimage
theorem, we conclude that f−1(0) is a submanifold. However, this is precisely the
nonzero noninvertible matrices, i.e. the matrices of rank 1. Therefore, the matrices
of rank 1 form a submanifold.

13 We first concern ourselves with the union of manifolds.

Lemma 1. The union of manifolds of the same dimension

X =
⋃
i∈I

Xi

is a manifold if for every x ∈ X, there exists an Xi such that a neighborhood N of
x in X is a neighborhood of x in Xi.

Proof. Choose a parameterization about x in Xi such that the parameterization
maps into N . This chart is also a chart for X. As we can do this for every x ∈ X,
thus X is a manifold.

Lemma 2. Every m× n matrix with rank r has a r × r nonsingular minor.

Proof. Suppose our matrix is (aij) where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Choose linearly
independent rows i1, i2, . . . ir and linearly independent columns j1, j2, . . . , jr. Then
the minor (aij) where i ∈ {i1, . . . , ir} and j ∈ {j1, . . . , jr} is invertible.

Back to Problem. However, such a minor can be found anywhere in a m × n
matrix of rank r. If I ⊂ [1,m] and J ⊂ [1, n] are both sets of r integers, we denote
MIJ as all the m× n matrices such that

(aij), i ∈ I, j ∈ J

is an invertible minor. Then the union⋃
I,J

MI,J

consists of all matrices that have some r × r nonsingular minor.

Lemma 3. Each MIJ is an open set.

Proof. Define f to be the map that computes the determinant of the minor

(aij), i ∈ I, j ∈ J.

Then MIJ = f−1(R\{0}). As f is a polynomial function of the entries of an m× n
matrix, it is continuous and thus takes the preimages of open sets to open sets.

Back to Problem. Now we take into account the book’s hint. Consider the
matrices whose upper right r × r minor is nonsingular, i.e. M[1,r][1,r]. We use the
book’s notation and represent these matrices as(

B C
D E

)
.

Then if we post mulitply by a nonsingular matrix(
I −B−1C
0 I

)
4



we get the product (
B 0
D E −DB−1C.

)
If our original matrix has rank r, then so does our final matrix, and E−DB−1C = 0.
Conversely, suppose E − DB−1C = 0. Then our product matrix has rank r, and
hence so does the orignal matrix. Therefore, the matrices in M[1,r][1,r] with rank r
are precisely those where E −DB−1C = 0. We can rewrite

E −DB−1C =


g11 g12 . . . g1(n−r)
g21 g22 . . . g2(n−r)
. . . . . . . . . . . .

g(m−r)1 . . . . . . g(m−r)(n−r)

 = 0

where each gij is some polynomial function on the entries of matrices in M[1,r][1,r].
Note each gij is independent from the others because each gij uniquely takes the
ij-th element in E to 1 and every other entry in E to zero. Hence the set of matrices
of rank r in M[1,r][1,r] (which we denote as S[1,r][1,r]) can be cut out by (m− r)(n− r)
independent functions. Thus S[1,r][1,r] is a smooth manifold of codimenison (m −
r)(n− r).
Loop. By repeating the logic above for each set MIJ in turn (with computational
differences depending on where the minor is located), we note that each SIJ ⊂MIJ

is a manifold of codimension (m− r)(n− r).
Finale. We claim

S =
⋃
I,J

SIJ

is a manifold. For any x ∈ SIJ , we note S ∩MIJ is a open neighborhood of x in S
(Lemma 3). However,

S ∩MIJ = SIJ .

Hence by Lemma 1, we conclude S is a manifold. By Lemma 2 and the definition
of SIJ , we deduce that S is the set of all matrices of rank r. As it is the finite
union of submanifolds with codimension (m − r)(n − r), it itself has codimension
(m− r)(n− r).

6.
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