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Note

If for a point x of a manifold X we write “Let φ : U → X be a parametrization around x”, we
are automatically letting U be open containing the origin, and φ map the origin to the point
x. We write Nx for the precise open subset of the manifold X which φ is a parametrization of.

GP2 Exercise 8

Let D be the disc of radius
√
a centered at the origin of R2. First we claim that f(y, z) =√

z2 − y2 + a defines a smooth map f : D → R+. This is so because taking partial deriva-
tives only ever involves dividing by (fractional powers of) z2 − y2 − a, which is positive on
this domain. So all the partial derivatives exist.

Therefore f̃ : D → graph(f) given by f̃(y, z) = (
√
z2 − y2 + a, y, z) is a diffeomorphism.

Now we argue that within the open ball B in R3 of radius
√
a centered at (

√
a, 0, 0), all

points satisfying the given equation are of the form (
√
z2 − y2 + a, y, z) for some (y, z) ∈

D. Indeed any point (x, y, z) ∈ R3 satisfying the equation either looks like this or like
(−
√
z2 − y2 + a, y, z), and a point within

√
a of (

√
a, 0, 0) cannot have negative x coordi-

nate. We must have (y, z) ∈ D as y2 + z2 ≥ a implies that (x, y, z) is at least
√
a away from

(
√
a, 0, 0) no matter what x is, and thus not in this ball.

It follows that the set of points of B satisfying the equation are precisely B ∩ f̃(D). In other
words, the equation defines a submanifold of B diffeomorphic via f̃−1 to some open subset of
D. We know f̃ maps the origin to (

√
a, 0, 0), so the tangent space at this point will be im(df̃0).

We easily calculate df̃0 in the standard basis as∂(
√
z2−y2+a)
∂y

∂(
√
z2−y2+a)
∂z

∂y
∂y

∂y
∂z

∂z
∂y

∂z
∂z

 =

 −y
(z2−y2+a)3/2

z
(z2−y2+a)3/2

1 0
0 1

 =

0 0
1 0
0 1


at y = 0, z = 0. This has image the yz-plane, which we can see geometrically is indeed the
tangent space here.

GP2 Exercise 10

a) Let φ : U → X be a parametrization around x ∈ X. It is a fact that φ × φ is a
parametrization : U × U → X × X around (x, x). (Injectivity and surjectivity are
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purely set-theoretic. Smoothness of φ × φ and its inverse, φ−1 × φ−1, follow from
§1 Exercise 14.) We may calculate dfx using these two parametrizations. Letting
α = (φ−1 × φ−1) ◦ f ◦ φ, we observe that α is just the diagonal map : U → U × U .

We have that dfx is equal to d(φ−1 × φ−1)0 ◦ dα0 ◦ (dφ0)
−1 by definition.

By the above α is actually linear on its domain, so the derivative dαx at any point x
(in particular x = 0) is just α itself, extended linearly to all of Rk. But then it is easy
to compute that the above composition sends v 7→ (v, v).

b) With the same maps as in the previous part, we have that f ◦φ is a parametrization of
the diagonal ∆ around (x, x). By the manifold chain rule we have d(f ◦φ)0 = dfx ◦dφ0.
We know dφ0 is an isomorphism to Tx(X); combining this with the calculation of dfx
in the previous part (and basic linear algebra) we have im(dfx ◦ dφ0) = Tx(X)×Tx(X).
This is T(x,x)(∆).

GP2 Exercise 11

a) Let the diagonal map : X → X ×X of the last exercise now be called δ. Then using
the product-of-maps notation of Exercise 9 part (d), we have F = (id × f) ◦ δ. Thus
by the manifold chain rule dFx = d(id× f)(x,x) ◦ dδx.

By part (a) of the last exercise, dδx justs sends any v ∈ Tx(X) to (v, v). By Exercise 9
part (d), d(id× f)(x,x) = didx × dfx = id× dfx.

Putting both of these together, we see the composition d(id× f)(x,x) ◦ dδx indeed sends
v 7→ (v, dfx(v)).

b) The diffeomorphic copy of X inside X × Y given by the image of this diffeomorphism
F , is what we define to be graph(f). The tangent space TF (x)(graph(f)) to it at a
point F (x) is then im(dFx). By the previous part’s calculation of dFx, this is exactly
{(v, dfx(v))}, which is graph(dfx).

GP2 Exercise 12

First check: The curve c is always a map from an open in R to a subset X ⊂ Rn. Whether
X = Rn makes no difference; we still must have dct0 given in the standard basis by the

Jacobian, which is


c′1(t0)
c′2(t0)

...
c′n(t0)

 if ci : R → R are the coordinate functions. Indeed this returns
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itself as a vector,


c′1(t0)
c′2(t0)

...
c′n(t0)

, when applied to the input vector
[
1
]
.

Second claim: We first prove the statement for X = Rk. In this case, the tangent space is
again Rk, and by the first check any vector

a1
a2)
...
an


is the velocity vector of the curve A(x) = (a1x, a2x, . . . anx).

Now if X is any k-dimensional manifold parametrized around x by φ : Rk → RN , we have an
isomorphism of tangent spaces dφ0 : Rk → Tx(X). To get a curve in X whose velocity vector
is v ∈ Tx(X), take a curve c(t) in Rk with c(0) = 0 whose velocity vector at zero is (dφ0)

−1(v)
(possible by the proof for X = Rk). Then we claim φ ◦ c is a curve in X with velocity vector
v at zero. Indeed d(φ ◦ c)0(1) = (dφ0 ◦ dc0)(1) = dφ0(dc0(1)) = dφ0((dφ0)

−1(v)) = v.

GP3 Exercise 7

a) As the map g is smooth, by the inverse function theorem, we need only check that dg

is always an isomorphism. But g is a curve

[
cos(2πt)
sin(2πt)

]
, so by GP 2 Exercise 12 we

compute dgx =

[
−2π sin(2πx)
2π cos(2πx)

]
in the standard basis. This is always rank one, so as

an operator to Tx(S
1) (which is one-dimensional) it is always an isomorphism.

b) This is a purely set-theoretic statement, so we identify S1 with the unit circle in C
for computational convenience. Then G is the map : R2 → C2 sending (x, y) 7→
(e2πix, e2πiy). Suppose G fails to be one-to-one, i.e. we have two distinct points (x, y)
and (x′, y′) mapping under G to the same point. Then

e2πix = e2πix
′
, e2πiy = e2πiy

′
.

So
e2πi(x−x

′) = e2πi(y−y
′) = 1.

But this means x− x′ and y − y′ are integers. Thus the line from (x, y) to (x′, y′) has
rational slope (or infinite slope). In either case it does not have irrational slope, so we
are done.
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