## Note

If for a point $x$ of a manifold $X$ we write "Let $\phi: U \rightarrow X$ be a parametrization around $x$ ", we are automatically letting $U$ be open containing the origin, and $\phi$ map the origin to the point $x$. We write $N_{x}$ for the precise open subset of the manifold $X$ which $\phi$ is a parametrization $o f$.

## GP2 Exercise 8

Let $D$ be the disc of radius $\sqrt{a}$ centered at the origin of $\mathbb{R}^{2}$. First we claim that $f(y, z)=$ $\sqrt{z^{2}-y^{2}+a}$ defines a smooth map $f: D \rightarrow \mathbb{R}^{+}$. This is so because taking partial derivatives only ever involves dividing by (fractional powers of) $z^{2}-y^{2}-a$, which is positive on this domain. So all the partial derivatives exist.

Therefore $\tilde{f}: D \rightarrow \operatorname{graph}(f)$ given by $\tilde{f}(y, z)=\left(\sqrt{z^{2}-y^{2}+a}, y, z\right)$ is a diffeomorphism.

Now we argue that within the open ball $B$ in $\mathbb{R}^{3}$ of radius $\sqrt{a}$ centered at $(\sqrt{a}, 0,0)$, all points satisfying the given equation are of the form $\left(\sqrt{z^{2}-y^{2}+a}, y, z\right)$ for some $(y, z) \in$ $D$. Indeed any point $(x, y, z) \in \mathbb{R}^{3}$ satisfying the equation either looks like this or like $\left(-\sqrt{z^{2}-y^{2}+a}, y, z\right)$, and a point within $\sqrt{a}$ of $(\sqrt{a}, 0,0)$ cannot have negative $x$ coordinate. We must have $(y, z) \in D$ as $y^{2}+z^{2} \geq a$ implies that $(x, y, z)$ is at least $\sqrt{a}$ away from $(\sqrt{a}, 0,0)$ no matter what $x$ is, and thus not in this ball.

It follows that the set of points of $B$ satisfying the equation are precisely $B \cap \tilde{f}(D)$. In other words, the equation defines a submanifold of $B$ diffeomorphic via $\tilde{f}^{-1}$ to some open subset of $D$. We know $\tilde{f}$ maps the origin to $(\sqrt{a}, 0,0)$, so the tangent space at this point will be $\operatorname{im}\left(d \tilde{f}_{0}\right)$.

We easily calculate $d \tilde{f}_{0}$ in the standard basis as

$$
\left[\begin{array}{cc}
\frac{\partial\left(\sqrt{z^{2}-y^{2}+a}\right)}{\partial y} & \frac{\partial\left(\sqrt{z^{2}-y^{2}+a}\right)}{\partial z} \\
\frac{\partial y}{\partial y} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial y} & \frac{\partial z}{\partial z}
\end{array}\right]=\left[\begin{array}{cc}
\frac{-y}{\left(z^{2}-y^{2}+a\right)^{3 / 2}} & \frac{z}{\left(z^{2}-y^{2}+a\right)^{3 / 2}} \\
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

at $y=0, z=0$. This has image the $y z$-plane, which we can see geometrically is indeed the tangent space here.

## GP2 Exercise 10

a) Let $\phi: U \rightarrow X$ be a parametrization around $x \in X$. It is a fact that $\phi \times \phi$ is a parametrization : $U \times U \rightarrow X \times X$ around $(x, x)$. (Injectivity and surjectivity are
purely set-theoretic. Smoothness of $\phi \times \phi$ and its inverse, $\phi^{-1} \times \phi^{-1}$, follow from $\S 1$ Exercise 14.) We may calculate $d f_{x}$ using these two parametrizations. Letting $\alpha=\left(\phi^{-1} \times \phi^{-1}\right) \circ f \circ \phi$, we observe that $\alpha$ is just the diagonal map : $U \rightarrow U \times U$.
We have that $d f_{x}$ is equal to $d\left(\phi^{-1} \times \phi^{-1}\right)_{0} \circ d \alpha_{0} \circ\left(d \phi_{0}\right)^{-1}$ by definition.

By the above $\alpha$ is actually linear on its domain, so the derivative $d \alpha_{x}$ at any point $x$ (in particular $x=0$ ) is just $\alpha$ itself, extended linearly to all of $\mathbb{R}^{k}$. But then it is easy to compute that the above composition sends $v \mapsto(v, v)$.
b) With the same maps as in the previous part, we have that $f \circ \phi$ is a parametrization of the diagonal $\Delta$ around $(x, x)$. By the manifold chain rule we have $d(f \circ \phi)_{0}=d f_{x} \circ d \phi_{0}$. We know $d \phi_{0}$ is an isomorphism to $T_{x}(X)$; combining this with the calculation of $d f_{x}$ in the previous part (and basic linear algebra) we have im $\left(d f_{x} \circ d \phi_{0}\right)=T_{x}(X) \times T_{x}(X)$. This is $T_{(x, x)}(\Delta)$.

## GP2 Exercise 11

a) Let the diagonal map : $X \rightarrow X \times X$ of the last exercise now be called $\delta$. Then using the product-of-maps notation of Exercise 9 part (d), we have $F=(\mathrm{id} \times f) \circ \delta$. Thus by the manifold chain rule $d F_{x}=d(\mathrm{id} \times f)_{(x, x)} \circ d \delta_{x}$.

By part (a) of the last exercise, $d \delta_{x}$ justs sends any $v \in T_{x}(X)$ to $(v, v)$. By Exercise 9 part (d), $d(\mathrm{id} \times f)_{(x, x)}=d \mathrm{id}_{x} \times d f_{x}=\mathrm{id} \times d f_{x}$.

Putting both of these together, we see the composition $d(\mathrm{id} \times f)_{(x, x)} \circ d \delta_{x}$ indeed sends $v \mapsto\left(v, d f_{x}(v)\right)$.
b) The diffeomorphic copy of $X$ inside $X \times Y$ given by the image of this diffeomorphism $F$, is what we define to be graph $(f)$. The tangent space $T_{F(x)}(\operatorname{graph}(f))$ to it at a point $F(x)$ is then $\operatorname{im}\left(d F_{x}\right)$. By the previous part's calculation of $d F_{x}$, this is exactly $\left\{\left(v, d f_{x}(v)\right)\right\}$, which is $\operatorname{graph}\left(d f_{x}\right)$.

## GP2 Exercise 12

First check: The curve $c$ is always a map from an open in $\mathbb{R}$ to a subset $X \subset \mathbb{R}^{n}$. Whether $X=\mathbb{R}^{n}$ makes no difference; we still must have $d c_{t_{0}}$ given in the standard basis by the Jacobian, which is $\left[\begin{array}{c}c_{1}^{\prime}\left(t_{0}\right) \\ c_{2}^{\prime}\left(t_{0}\right) \\ \vdots \\ c_{n}^{\prime}\left(t_{0}\right)\end{array}\right]$ if $c_{i}: \mathbb{R} \rightarrow \mathbb{R}$ are the coordinate functions. Indeed this returns
itself as a vector, $\left[\begin{array}{c}c_{1}^{\prime}\left(t_{0}\right) \\ c_{2}^{\prime}\left(t_{0}\right) \\ \vdots \\ c_{n}^{\prime}\left(t_{0}\right)\end{array}\right]$, when applied to the input vector $[1]$.
Second claim: We first prove the statement for $X=\mathbb{R}^{k}$. In this case, the tangent space is again $\mathbb{R}^{k}$, and by the first check any vector

$$
\left[\begin{array}{c}
a_{1} \\
\left.a_{2}\right) \\
\vdots \\
a_{n}
\end{array}\right]
$$

is the velocity vector of the curve $A(x)=\left(a_{1} x, a_{2} x, \ldots a_{n} x\right)$.

Now if $X$ is any $k$-dimensional manifold parametrized around $x$ by $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{N}$, we have an isomorphism of tangent spaces $d \phi_{0}: \mathbb{R}^{k} \rightarrow T_{x}(X)$. To get a curve in $X$ whose velocity vector is $v \in T_{x}(X)$, take a curve $c(t)$ in $\mathbb{R}^{k}$ with $c(0)=0$ whose velocity vector at zero is $\left(d \phi_{0}\right)^{-1}(v)$ (possible by the proof for $X=\mathbb{R}^{k}$ ). Then we claim $\phi \circ c$ is a curve in $X$ with velocity vector $v$ at zero. Indeed $d(\phi \circ c)_{0}(1)=\left(d \phi_{0} \circ d c_{0}\right)(1)=d \phi_{0}\left(d c_{0}(1)\right)=d \phi_{0}\left(\left(d \phi_{0}\right)^{-1}(v)\right)=v$.

## GP3 Exercise 7

a) As the map $g$ is smooth, by the inverse function theorem, we need only check that $d g$ is always an isomorphism. But $g$ is a curve $\left[\begin{array}{c}\cos (2 \pi t) \\ \sin (2 \pi t)\end{array}\right]$, so by GP 2 Exercise 12 we compute $d g_{x}=\left[\begin{array}{c}-2 \pi \sin (2 \pi x) \\ 2 \pi \cos (2 \pi x)\end{array}\right]$ in the standard basis. This is always rank one, so as an operator to $T_{x}\left(S^{1}\right)$ (which is one-dimensional) it is always an isomorphism.
b) This is a purely set-theoretic statement, so we identify $S^{1}$ with the unit circle in $\mathbb{C}$ for computational convenience. Then $G$ is the map : $\mathbb{R}^{2} \rightarrow \mathbb{C}^{2}$ sending $(x, y) \mapsto$ $\left(e^{2 \pi i x}, e^{2 \pi i y}\right)$. Suppose $G$ fails to be one-to-one, i.e. we have two distinct points $(x, y)$ and ( $x^{\prime}, y^{\prime}$ ) mapping under $G$ to the same point. Then

$$
e^{2 \pi i x}=e^{2 \pi i x^{\prime}}, \quad e^{2 \pi i y}=e^{2 \pi i y^{\prime}}
$$

So

$$
e^{2 \pi i\left(x-x^{\prime}\right)}=e^{2 \pi i\left(y-y^{\prime}\right)}=1
$$

But this means $x-x^{\prime}$ and $y-y^{\prime}$ are integers. Thus the line from $(x, y)$ to $\left(x^{\prime}, y^{\prime}\right)$ has rational slope (or infinite slope). In either case it does not have irrational slope, so we are done.

