Math 141, Prof. Vaintrob
Homework 3 October 6, 2019

Note

If for a point x of a manifold X we write “Let ¢ : U — X be a parametrization around x”, we
are automatically letting U be open containing the origin, and ¢ map the origin to the point
x. We write N, for the precise open subset of the manifold X which ¢ is a parametrization of.

GP2 Exercise 8

Let D be the disc of radius /a centered at the origin of R?. First we claim that f(y,z) =
/22 — y? + a defines a smooth map f : D — R*. This is so because taking partial deriva-
tives only ever involves dividing by (fractional powers of) z? — y? — a, which is positive on
this domain. So all the partial derivatives exist.

Therefore f : D — graph(f) given by f(y, 2) = (/22 — 42 + a,y, ) is a diffeomorphism.

Now we argue that within the open ball B in R? of radius y/a centered at (1/a,0,0), all
points satisfying the given equation are of the form (1/2%2 — y? + a,y, z) for some (y,z) €
D. Indeed any point (z,y,z) € R?® satisfying the equation either looks like this or like
(=22 —y%+a,y,z), and a point within v/a of (1/a,0,0) cannot have negative x coordi-
nate. We must have (y,2) € D as y*> + 22 > a implies that (x,y, z) is at least \/a away from
(v/a,0,0) no matter what x is, and thus not in this ball.

It follows that the set of points of B satisfying the equation are precisely BN f (D). In other
words, the equation defines a submanifold of B diffeomorphic via f ~1 to some open subset of
D. We know f maps the origin to (1/a, 0, 0), so the tangent space at this point will be im(d f).

We easily calculate dfy in the standard basis as

O/ z2—y2+a) I(\/22—y?+a) —

Y z 0 O
ay Oz (22—y2+a)3/2 (22_y2+a)3/2
o T 1 0 ~ |10
oz oz 0 1 0 1
Oy 0z

at y = 0, z = 0. This has image the yz-plane, which we can see geometrically is indeed the
tangent space here.

GP2 Exercise 10

a) Let ¢ : U — X be a parametrization around =z € X. It is a fact that ¢ X ¢ is a
parametrization : U x U — X x X around (z,x). (Injectivity and surjectivity are
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purely set-theoretic. Smoothness of ¢ x ¢ and its inverse, ¢~! x ¢~!, follow from

§1 Exercise 14.) We may calculate df, using these two parametrizations. Letting
a= (¢ x ¢p71) o fog, we observe that a is just the diagonal map : U — U x U.

We have that df, is equal to d(¢~! x ¢~1)g o dayg o (depy) ™! by definition.

By the above « is actually linear on its domain, so the derivative da, at any point x
(in particular z = 0) is just « itself, extended linearly to all of R¥. But then it is easy
to compute that the above composition sends v — (v, v). O

With the same maps as in the previous part, we have that f o ¢ is a parametrization of
the diagonal A around (x,z). By the manifold chain rule we have d(f o ¢)o = df, o dy.
We know d¢y is an isomorphism to 7,,(X); combining this with the calculation of df,
in the previous part (and basic linear algebra) we have im(df, o d¢g) = T,.(X) x T,(X).
This is T(xjx)(A) ]

GP2 Exercise 11

a)

Let the diagonal map : X — X x X of the last exercise now be called 6. Then using
the product-of-maps notation of Exercise 9 part (d), we have F' = (id x f) o 6. Thus
by the manifold chain rule dF, = d(id x f)(g4) o dd,.

By part (a) of the last exercise, dd, justs sends any v € T,(X) to (v,v). By Exercise 9
part (d), d(id x f)g.) = did, x df, = id x df.

Putting both of these together, we see the composition d(id X f)(; ) © dd, indeed sends
v = (v, df(v)). O

The diffeomorphic copy of X inside X x Y given by the image of this diffeomorphism
F, is what we define to be graph(f). The tangent space Tr(, (graph(f)) to it at a
point F'(z) is then im(dF,). By the previous part’s calculation of dF,, this is exactly

{(v,df(v))}, which is graph(df,). O

GP2 Exercise 12

First check: The curve c is always a map from an open in R to a subset X C R". Whether
X = R" makes no difference; we still must have dc;, given in the standard basis by the

c1(to)
c5(to)

Jacobian, which is ) if ¢; : R — R are the coordinate functions. Indeed this returns

ch(to)
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ci(to)
. ch(to) . .
itself as a vector, . , when applied to the input vector [1}
cn(to)

Second claim: We first prove the statement for X = R*. In this case, the tangent space is
again R”*, and by the first check any vector

(3]
CLQ)

Qn

is the velocity vector of the curve A(x) = (ayz, asz, .. . ayx). O

Now if X is any k-dimensional manifold parametrized around z by ¢ : R¥ — RY we have an
isomorphism of tangent spaces d¢g : R¥ — T,(X). To get a curve in X whose velocity vector
is v € T,(X), take a curve ¢(t) in R¥ with ¢(0) = 0 whose velocity vector at zero is (dég)~*(v)
(possible by the proof for X = R¥). Then we claim ¢ o c is a curve in X with velocity vector
v at zero. Indeed d(¢ o c)o(1) = (dgg o deg)(1) = deo(deo(1)) = dgo((dgy)(v)) = v. O

GP3 Exercise 7

a) As the map g is smooth, by the inverse function theorem, we need only check that dg

. : : : cos(2t) :

is always an isomorphism. But ¢ is a curve Lm (2r lf)} so by GP 2 Exercise 12 we
—2m sin(27z)
27 cos(2mx)

an operator to T,,(S') (which is one-dimensional) it is always an isomorphism. O

compute dg, = } in the standard basis. This is always rank one, so as

b) This is a purely set-theoretic statement, so we identify S' with the unit circle in C
for computational convenience. Then G is the map : R?> — C? sending (z,y)
(e?™ e*™) . Suppose G fails to be one-to-one, i.e. we have two distinct points (x,y)
and (2/,y") mapping under G to the same point. Then

. ., . .y
627rzm — 627rzx 7 e27rzy — e27rzy ]

So

6271’1'(:)37:1:’) _ 627Ti(y*y/) = 1.

But this means x — 2’ and y — ¢ are integers. Thus the line from (z,y) to (z/,y’) has
rational slope (or infinite slope). In either case it does not have irrational slope, so we
are done. ]



