Note

If for a point x of a manifold X we write "Let $\phi: U \to X$ be a parametrization around x", we are automatically letting U be open containing the origin, and ϕ map the origin to the point x. We write N_x for the precise open subset of the manifold X which ϕ is a parametrization of.

GP2 Exercise 8

Let D be the disc of radius \sqrt{a} centered at the origin of \mathbb{R}^2 . First we claim that $f(y, z) = \sqrt{z^2 - y^2 + a}$ defines a smooth map $f: D \to \mathbb{R}^+$. This is so because taking partial derivatives only ever involves dividing by (fractional powers of) $z^2 - y^2 - a$, which is positive on this domain. So all the partial derivatives exist.

Therefore $\tilde{f}: D \to \operatorname{graph}(f)$ given by $\tilde{f}(y, z) = (\sqrt{z^2 - y^2 + a}, y, z)$ is a diffeomorphism.

Now we argue that within the open ball B in \mathbb{R}^3 of radius \sqrt{a} centered at $(\sqrt{a}, 0, 0)$, all points satisfying the given equation are of the form $(\sqrt{z^2 - y^2 + a}, y, z)$ for some $(y, z) \in D$. Indeed any point $(x, y, z) \in \mathbb{R}^3$ satisfying the equation either looks like this or like $(-\sqrt{z^2 - y^2 + a}, y, z)$, and a point within \sqrt{a} of $(\sqrt{a}, 0, 0)$ cannot have negative x coordinate. We must have $(y, z) \in D$ as $y^2 + z^2 \ge a$ implies that (x, y, z) is at least \sqrt{a} away from $(\sqrt{a}, 0, 0)$ no matter what x is, and thus not in this ball.

It follows that the set of points of B satisfying the equation are precisely $B \cap \tilde{f}(D)$. In other words, the equation defines a submanifold of B diffeomorphic via \tilde{f}^{-1} to some open subset of D. We know \tilde{f} maps the origin to $(\sqrt{a}, 0, 0)$, so the tangent space at this point will be $\operatorname{im}(d\tilde{f}_0)$.

We easily calculate $d\tilde{f}_0$ in the standard basis as

$$\begin{bmatrix} \frac{\partial(\sqrt{z^2 - y^2 + a})}{\partial y} & \frac{\partial(\sqrt{z^2 - y^2 + a})}{\partial z} \\ \frac{\partial y}{\partial y} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial z} \end{bmatrix} = \begin{bmatrix} \frac{-y}{(z^2 - y^2 + a)^{3/2}} & \frac{z}{(z^2 - y^2 + a)^{3/2}} \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

at y = 0, z = 0. This has image the yz-plane, which we can see geometrically is indeed the tangent space here.

GP2 Exercise 10

a) Let $\phi : U \to X$ be a parametrization around $x \in X$. It is a fact that $\phi \times \phi$ is a parametrization : $U \times U \to X \times X$ around (x, x). (Injectivity and surjectivity are

purely set-theoretic. Smoothness of $\phi \times \phi$ and its inverse, $\phi^{-1} \times \phi^{-1}$, follow from §1 Exercise 14.) We may calculate df_x using these two parametrizations. Letting $\alpha = (\phi^{-1} \times \phi^{-1}) \circ f \circ \phi$, we observe that α is just the diagonal map : $U \to U \times U$.

We have that df_x is equal to $d(\phi^{-1} \times \phi^{-1})_0 \circ d\alpha_0 \circ (d\phi_0)^{-1}$ by definition.

By the above α is actually linear on its domain, so the derivative $d\alpha_x$ at any point x (in particular x = 0) is just α itself, extended linearly to all of \mathbb{R}^k . But then it is easy to compute that the above composition sends $v \mapsto (v, v)$.

b) With the same maps as in the previous part, we have that $f \circ \phi$ is a parametrization of the diagonal Δ around (x, x). By the manifold chain rule we have $d(f \circ \phi)_0 = df_x \circ d\phi_0$. We know $d\phi_0$ is an isomorphism to $T_x(X)$; combining this with the calculation of df_x in the previous part (and basic linear algebra) we have $\operatorname{im}(df_x \circ d\phi_0) = T_x(X) \times T_x(X)$. This is $T_{(x,x)}(\Delta)$.

GP2 Exercise 11

a) Let the diagonal map : $X \to X \times X$ of the last exercise now be called δ . Then using the product-of-maps notation of Exercise 9 part (d), we have $F = (\mathrm{id} \times f) \circ \delta$. Thus by the manifold chain rule $dF_x = d(\mathrm{id} \times f)_{(x,x)} \circ d\delta_x$.

By part (a) of the last exercise, $d\delta_x$ justs sends any $v \in T_x(X)$ to (v, v). By Exercise 9 part (d), $d(\mathrm{id} \times f)_{(x,x)} = d\mathrm{id}_x \times df_x = \mathrm{id} \times df_x$.

Putting both of these together, we see the composition $d(\operatorname{id} \times f)_{(x,x)} \circ d\delta_x$ indeed sends $v \mapsto (v, df_x(v))$.

b) The diffeomorphic copy of X inside $X \times Y$ given by the image of this diffeomorphism F, is what we define to be graph(f). The tangent space $T_{F(x)}(\operatorname{graph}(f))$ to it at a point F(x) is then $\operatorname{im}(dF_x)$. By the previous part's calculation of dF_x , this is exactly $\{(v, df_x(v))\}$, which is graph (df_x) .

GP2 Exercise 12

First check: The curve c is always a map from an open in \mathbb{R} to a subset $X \subset \mathbb{R}^n$. Whether $X = \mathbb{R}^n$ makes no difference; we still must have dc_{t_0} given in the standard basis by the Jacobian, which is $\begin{bmatrix} c'_1(t_0) \\ c'_2(t_0) \\ \vdots \\ c'_n(t_0) \end{bmatrix}$ if $c_i : \mathbb{R} \to \mathbb{R}$ are the coordinate functions. Indeed this returns

itself as a vector, $\begin{bmatrix} c'_1(t_0) \\ c'_2(t_0) \\ \vdots \\ c'_n(t_0) \end{bmatrix}$, when applied to the input vector [1].

Second claim: We first prove the statement for $X = \mathbb{R}^k$. In this case, the tangent space is again \mathbb{R}^k , and by the first check any vector

 $\begin{vmatrix} a_2 \\ \vdots \end{vmatrix}$

is the velocity vector of the curve $A(x) = (a_1x, a_2x, \dots, a_nx)$.

Now if X is any k-dimensional manifold parametrized around x by $\phi : \mathbb{R}^k \to \mathbb{R}^N$, we have an isomorphism of tangent spaces $d\phi_0 : \mathbb{R}^k \to T_x(X)$. To get a curve in X whose velocity vector is $v \in T_x(X)$, take a curve c(t) in \mathbb{R}^k with c(0) = 0 whose velocity vector at zero is $(d\phi_0)^{-1}(v)$ (possible by the proof for $X = \mathbb{R}^k$). Then we claim $\phi \circ c$ is a curve in X with velocity vector v at zero. Indeed $d(\phi \circ c)_0(1) = (d\phi_0 \circ dc_0)(1) = d\phi_0(dc_0(1)) = d\phi_0((d\phi_0)^{-1}(v)) = v$.

GP3 Exercise 7

- a) As the map g is smooth, by the inverse function theorem, we need only check that dg is always an isomorphism. But g is a curve $\begin{bmatrix} \cos(2\pi t) \\ \sin(2\pi t) \end{bmatrix}$, so by GP 2 Exercise 12 we compute $dg_x = \begin{bmatrix} -2\pi \sin(2\pi x) \\ 2\pi \cos(2\pi x) \end{bmatrix}$ in the standard basis. This is always rank one, so as an operator to $T_x(S^1)$ (which is one-dimensional) it is always an isomorphism. \Box
- b) This is a purely set-theoretic statement, so we identify S^1 with the unit circle in \mathbb{C} for computational convenience. Then G is the map : $\mathbb{R}^2 \to \mathbb{C}^2$ sending $(x, y) \mapsto (e^{2\pi i x}, e^{2\pi i y})$. Suppose G fails to be one-to-one, i.e. we have two distinct points (x, y) and (x', y') mapping under G to the same point. Then

$$e^{2\pi ix} = e^{2\pi ix'}, \qquad e^{2\pi iy} = e^{2\pi iy'}.$$

So

$$e^{2\pi i(x-x')} = e^{2\pi i(y-y')} = 1.$$

But this means x - x' and y - y' are integers. Thus the line from (x, y) to (x', y') has rational slope (or infinite slope). In either case it does not have irrational slope, so we are done.