
MATH 141 Homework 2

1. GP 1.6. f(x) = x3 is smooth, as a polynomial, but f−1 is not smooth. To see this,

note that f (y) = 3
√
y, but (f )′ (y) = 1

3
x−

2
3 , so (f )′(0) is not defined, meaning that f is not

differentiable at 0, and hence not smooth.

GP 1.7. Let X denote this potential manifold. For X to be a manifold, it must be an
n-manifold for some fixed n. We see immediately that n = 1 by noting that some points in
X have neighbourhoods homeomorphic to 1-dimensional spaces. Then there must be some
open set U ⊂ X containing 0 and an open set V ⊂ R that is diffeomorphic to U . Then U is
homeomorphic to V . This cannot be true however as removing 0 from U leaves 4 connected
components but removing f(0) from V (where f is the homeomorphism from U to V )
leaves V with 2 connected components. As homeomorphisms preserve topological properties,
including connectedness and connected components, we get a contradiction. Therefore X is
not a manifold.

2. GP 1.18.

(a) For x < 0, f is clearly smooth and every derivative is 0 everywhere. For x > 0, note
that both ex and − 1

x2
are smooth (as x is never 0). Composition of smooth functions

is smooth, so we see that f is smooth away from 0. It remains to investigate behaviour
at 0. If fn(0) exists for some positive n, it must be equal to 0. I prove this claim
inductively on n, and by taking limits from the left. If f (n)(0) exists, we must have:

f (n)(0) = lim
x→0−

f (n−1)(x)− f (n−1)(0)

x
= lim

x→0−

0

x
= 0.

It remains to evaluate these corresponding limits from the right. Differenciating e−x
−2

iteratively using the product and chain rule, it can be shown that for x > 0, f (n)(x) is
of the form p(x )e−x

−2
, where p(x ) is a polynomial in x . We take the limit (again we

inductively assume that f (n−1)(0) = 0)

lim
x→0+

f (n−1)(x)− f (n−1)(0)

x
=
p(x )e−x

−2

x
= q(x )e−x

−2

.

We now investigate the following limit by the change of variables x 7→ z

lim
x→0+

x−ke−x
−2

= lim
z→∞

zke−z
2

= lim
z→∞

zk

ez2
= lim

z→∞

kzk−1

−2zez2
= 0,

where we have used L’Hospital’s rule, and performed an induction on k. This shows
that every term in q(x )e−x

−2
goes to 0 as x→ 0+, completing the proof of smoothness

of f at 0.
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(b) There is a typo in GP: instead, define g(x) = f(x− a)f(b− x). Then g is the product
of two smooth functions and hence smooth, g(x) = 0 if x /∈ (a, b) as one of the terms
in the product will be 0 as either x − a ≤ 0 or b − x ≥ 0, and g will be positive on
(a, b) as x− a, b− x > 0 and f is positive on R>0.

Note that g is continuous and thus integrable on (a, b) and 0 everywhere else so inte-
grable on R.

∫ x
−∞ g(t)dt has first derivative g(x) at x by the Fundamental Theorem of

Calculus and by the smoothness of g. Then every higher order derivative of the integral
function must also exist as they are simply the derivatives of g. Finally h must also be
smooth as the denominator is a constant.

If x < a,
∫ x
−∞ g(t)dt =

∫ x
−∞ 0dt = 0 =⇒ h(x) = 0 for x < a. Note that∫ ∞

−∞
g(t)dt =

∫ a

−∞
g(t)dt+

∫ b

a

g(t)dt+

∫ ∞
b

g(t)dt = 0 +

∫ b

a

g(t)dt+ 0,

and if x < b : ∫ x

−∞
g(t)dt =

∫ b

a

g(t)dt+

∫ x

b

g(t)dt =

∫ b

a

g(t)dt+ 0,

showing that h(x) = 1.

Let a < x < b. Then g(x) = d > 0 and the continuity of g =⇒ ∃δ > 0 st
g(z) > d

2
for z ∈ [x − δ, x]. This, along with the nonnegativity of g means that∫ x

−∞ g(t)dt ≥
∫ x
x−δ g(t)dt > 0. So h(x) > 0. A very similar argument shows that h(x)

is strictly less than 1 for x < b. (The fact that h is nondecreasing follows from the
nonnegativity of g and shows the non-strict part). So 0 < h(x) < 1 for x ∈ (a, b).

(c) Let f, g, h be defined as above but using a2 and b2 in place of a and b. Set i(x) =
h(x21 + · · ·+ x2k). Note that x = (x1, . . . , xk) 7→ x21 + · · ·x2k is smooth (as a composition
of x2 and projection functions) so i is smooth. Furthermore |x| ≤ a =⇒

∑
x2i <

a2 =⇒ h(
∑
x2i ) = i(x) = 0. Similarly, |x| ≥ b =⇒ i(x) = 1, and by the properties

of h, a < |x| < b =⇒ 0 < i(x) < 1. So 1− i(x) is smooth, and is exactly the function
we need.

3. GP 2.1. Let x ∈ X ⊂ Y , and suppose the manifolds are of dimension n in Rm. Then
there exists an open nbd of x, V ⊂ Rm, an open set U ⊂ Rn and f : U → V st f is a
diffeomorphism, and can be considered as a chart to both X and Y around x. We can then
consider the commutative diagram on page 10 on GP, and see that the function h : U → U is
the identity map. Taking derivatives, and using the chain rule we see that df ◦ dix = df ◦ dh,
and since df is invertible at all points, dix = dh which is the identity mapping.

GP 2.2 Tx(X), Tx(U) are independent of the choice of open V ⊂ Rn,W ⊂ X, where
x ∈ W and homeomorphism f between them. We can find an open subset of W contained
in U , and restrict f to this subset, so we can assume W ⊂ U . Then the same map f maps
W to an open nbd of x in both X and U , meaning that Tx(X) = Tx(U) = im dfx.
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4. GP 2.6. Let x = (a, b) be given and note that we can let f : U → S1 be defined by
f(θ) = (cos θ, sin θ) on some small open interval U contained in (−π, 2π) in such a way that
f is a diffeomorphism from U to some open nbd of (a, b) in S1. Then df = (− sin θ, cos θ),
and dfx = (−b, a), showing that Tx(X) is the space spanned by (−b, a) as required.

GP 2.7 Tx(X) will be the set of all vectors (x, y, z) perpendicular to (a, b, c) which can
be seen to have basis {(b,−a, 0), (c, 0,−a)}. I am taking “exhibit” to mean we don’t have
to prove this but the basic idea is to define some parametrisation of S2 using spherical
coordinates, and calculate derivatives as in 2.6.

5. Fix p. Let ϕ : U → RN be a diffeomorphism from U to some nbd of p in X st ϕ(q) = p.
We use the chain rule to show that f ◦ ϕ = 0 =⇒ dfp ◦ ϕq = 0. Therefore for any vector
v ∈ imϕq we have dfp(v) = 0 which means exactly that Tp(X) = im dϕq ⊂ ker dfp.

Define f : Rn → R, x = (x1, . . . , xn) 7→ x21+ · · ·+x2n−1. Then f is smooth and f(X) = 0.
This proves that Tp(X) ⊂ ker dfp for all p ∈ Sn−1. To show the equality, see that dfp = 2pt.
So dfp(v) = 0 ⇐⇒ p · v = 0 ⇐⇒ v ⊥ p. For p ∈ Sn−1, we have that Tp(S

n−1) is exactly
the set of all vectors v perpendicular to p, proving that Tp(X) = ker dfp.
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