## Math 141 Homework 1

October 6, 2019
1.
2. Hatcher 2, 3.

2(a) Suppose open set $U$ is contained in $A$. Then for every $x \in U, A$ is a neighborhood of $x$, implying that $x \in \operatorname{int}(A)$. Hence $U \subset \operatorname{int}(A)$ and $\operatorname{int}(A)$ is the largest open set contained by $A$.
2(b) Suppose $A$ is contained in closed set $E$ and $x$ is a limit point of $A$. Then $x$ is a limit point of $E$, and as $E$ is closed, it contains its own limit points. Hence $\bar{A} \subset E$ and $\bar{A}$ is the smallest closed set containing $A$.
Note. The results of 2(a) and 2(b) will be used frequently in this homework without explicit reference.
3. Note $\emptyset$ and $R$ are in $\mathcal{O}$.

For $I_{a}, I_{b} \in \mathcal{O}$, note $I_{a} \cap I_{b}=I_{\max (a, b)}$. Hence $\mathcal{O}$ is closed under finite intersections. Let $S \subset \mathbb{R} \cup\{-\infty, \infty\}$. Then

$$
\bigcup_{s \in S} I_{s}=I_{\inf (S)}
$$

which always exists because $\mathbb{R} \cup\{-\infty, \infty\}$ is a complete totally ordered set ("the least upper bound property"). Hence $\mathcal{O}$ is a topology.
Recall the closure of a set $A \subset \mathbb{R}$ is the smallest closed set containing $A$. Thus the closure of $A$ under topology $\mathcal{O}$ is $(-\infty, \sup (A)]$.
3. Hatcher 4, 5.

4(a) Suppose $x \in \overline{X-A}$. Then every open neighborhood containing $x$ contains some element of $X-A$. Thus $x \notin \operatorname{int}(A)$, which implies $x \in X-\operatorname{int}(A)$.
Conversely suppose $x \in X-\operatorname{int}(A)$. Then $x \notin \operatorname{int}(A)$, which implies every open set containing $x$ contains some element of $X-A$. Thus $x \in \overline{X-A}$.
4(b) Suppose $x \in \operatorname{int}(X-A)$. Then there exists an open neighborhood of $x$ containing only elements from $X-A$, which implies $x$ in not in the closure of $A$, i.e. $x \in X-\bar{A}$. Conversely, if $x \notin \bar{A}$, then there exists a open neighborhood of $x$ in $X-A$, i.e. $x \in \operatorname{int}(X-A)$.
5(a) As $A \cup B \subset \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B}$ is closed, thus $\overline{A \cup B} \subset \bar{A} \cup \bar{B}$ (by exercise 2).
Conversely, the limit points of $A$ are also the limit points of $A \cup B$. Hence $\bar{A} \subset \overline{A \cup B}$ and likewise $\bar{B} \subset \overline{A \cup B}$. Hence $\bar{A} \cup \bar{B} \subset \overline{A \cup B}$.

5(b) As $A \cap B \subset \bar{A} \cap \bar{B}$ and $\bar{A} \cap \bar{B}$ is closed, thus $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$.
As an counterexample for equality, consider the sets $A=[0,1)$ and $B=(1,2]$. Then $\overline{A \cap B}=\emptyset$ but $\bar{A} \cap \bar{B}=\{1\}$.
$5(c)$ As $\operatorname{int}(A) \cap \operatorname{int}(B) \subset A \cap B$ and $\operatorname{int}(A) \cap \operatorname{int}(B)$ is open, hence $\operatorname{int}(A) \cap \operatorname{int}(B) \subset$ $\operatorname{int}(A \cap B)$.
Conversely, we note $\operatorname{int}(A \cap B) \subset \operatorname{int}(A)$ and likewise for the roles of $A$ and $B$ switched, hence $\operatorname{int}(A \cap B) \subset \operatorname{int}(A) \cap \operatorname{int}(B)$.
$5(\mathrm{~d})$ As $\operatorname{int}(A) \subset \operatorname{int}(A \cup B)$ and $\operatorname{int}(B) \subset \operatorname{int}(A \cup B)$, $\operatorname{thus} \operatorname{int}(A) \cup \operatorname{int}(B) \subset \operatorname{int}(A \cup B)$. As an counterexample for equality, consider the sets $A=(0,1]$ and $B=[1,2)$. Then $\operatorname{int}(A) \cup \operatorname{int}(B)=(0,1) \cup(1,2)$. However, $\operatorname{int}(A \cup B)=(0,2)$.
4. Hatcher 7, 8.
7. Suppose $X$ has a topology $\mathcal{S}$. Then the topology of $Y$ is $\mathcal{T}=\{Y \cap S \mid S \in \mathcal{S}\}$. As $Z$ is a subspace of $Y$, thus the topology of $Z$ is $\{Z \cap T \mid T \in \mathcal{T}\}=\{Z \cap Y \cap S \mid S \in$ $\mathcal{S}\}=\{Z \cap S \mid S \in \mathcal{S}\}$, that is, $Z$ has the subspace topology in $X$.
8. Recall the subspace topology of a metric space agrees with the topology generated by the metric restricted to that subspace.
If $O$ is open in the subspace topology, that means for each $x \in O$, there exists an open ball of radius $\varepsilon$ centered at $x$ in metric space $A$ such that every point in the ball is contained in $O$. This is equivalent to saying that there exists an open ball of radius $\varepsilon$ centered at $x$ in metric space $\mathbb{R}^{2}$ such that every point in $A$ is also in $O$.
Conversely, suppose for each point $x \in O$, there exists $\varepsilon>0$ such that every point in $A$ that is $\varepsilon$-close to $x$ is in $O$. This means the open ball centered at $x$ with radius $\varepsilon$ intersected with $A$ is contained in $O$. By definition of subspace topology, this implies $O$ is a neighborhood of $x$, hence $O$ is open in $A$.
5. (a) Consider the family of open disks of radius 1 centered on the lattice points of $\mathbb{R}^{2}$. As this is an open cover with no finite subcover, $\mathbb{R}^{2}$ is not compact.
(b) Recall $\tan (x):\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ is a continuous function. Thus we can define a continuous function $f: \mathbb{R} \times(0,1) \rightarrow \mathbb{R}^{2}$ by

$$
f(a, b)=\left(a, \tan \left(\pi b-\frac{\pi}{2}\right)\right) .
$$

(Note we have used the property that the composition of continuous functions is continuous). Similarly, we can define a continuous function $g: \mathbb{R}^{2} \rightarrow \mathbb{R} \times(0,1)$ by

$$
g(a, b)=\left(a, \frac{\arctan (b)}{\pi}+\frac{1}{2}\right) .
$$

It is easy to see that

$$
f \circ g=g \circ f=\mathrm{I}
$$

hence $f$ is a homeomorphism. From problem 6, we deduce that as $\mathbb{R}^{2}$ is not compact, then so isn't $\mathbb{R} \times(0,1)$.
6. Suppose $\left\{V_{i}\right\}_{i \in I}$ is an open cover of $f(X)$. As $f$ is continuous, thus $\left\{f^{-1}\left(V_{i}\right)\right\}_{i \in I}$ is an open cover of $X$. As $X$ is compact, we choose a finite subcover $f^{-1}\left(V_{a_{1}}\right), f^{-1}\left(V_{a_{2}}\right), \cdots, f^{-1}\left(V_{a_{n}}\right)$. Then $V_{a_{1}}, V_{a_{2}}, \cdots, V_{a_{n}}$ is a finite subcover of $\left\{V_{i}\right\}_{i \in I}$. Hence $f(X)$ is compact.
7. (a) We denote $\left\{\left(a_{1}, \cdots, a_{k}, 0, \cdots, 0\right)\right\}$ as the set $X \subset \mathbb{R}^{l}$. Define $\iota: \mathbb{R}^{k} \rightarrow X$ to be the (obvious) diffeomorphism

$$
\iota\left(a_{1}, \cdots, a_{k}\right)=\left(a_{1}, \cdots, a_{k}, 0, \cdots, 0\right),
$$

and $\pi: \mathbb{R}^{l} \rightarrow \mathbb{R}^{k}$ to be the smooth map

$$
\pi\left(\left(a_{1}, \cdots, a_{l}\right)\right)=\left(a_{1}, \cdots, a_{k}\right)
$$

Suppose $f=f\left(a_{1}, \cdots, a_{k}\right)$ is some smooth function defined on $\mathbb{R}^{n}$. Define $g$ on $\mathbb{R}^{l}$ by

$$
g(x)=f \circ \pi(x) .
$$

which is smooth as it is the composition of smooth maps on open sets. Thus the restriction of $g$ onto $X$ is smooth. Similarly, for any smooth function $g$ on $X$, we have the corresponding function

$$
f(y)=g \circ \iota(y) .
$$

As there exists smooth function $\tilde{g}$ defined in a open neighborhood of $\iota(y)$ that agrees with $g$, we again note that the composition of smooth maps on open sets are smooth and deduce that $f$ is locally smooth, and hence smooth. Therefore the smooth functions on $\mathbb{R}^{k}$ considered as a subset of $\mathbb{R}^{l}$ are the "same" as usual.
(b) Let $f$ be a smooth map on $X$. For any $z \in Z$, as $z \in X$, there exists open set $U$ in $\mathbb{R}^{N}$ and smooth map $\tilde{f}$ defined on $U$ that agrees with $f$ on $X \cap U$. Thus $\tilde{f}$ agrees with the restriction of $f$ to $Z$ on the set $Z \cap U$, implying that $\left.f\right|_{Z}$ is a smooth map on $Z$.
(c) Given any $x \in X$, let $V$ be an open neighborhood of $f(x)$ in $\mathbb{R}^{M}$ such that there exists smooth map $\tilde{g}$ defined on $V$ which agrees with $g$ on $Y \cap V$. By definition, there are open neighborhoods $U$ of $x$ such that there exists smooth map $\tilde{f}$ defined on $U$ which agrees with $f$ in $U \cap X$. As $f$ is continuous, we can make $U$ small enough such that range of $\tilde{f}$ is contained in $V$. Note $\tilde{g} \circ \tilde{f}$ agrees with $g \circ f$ in $U \cap X$ and is smooth. Hence $g \circ f$ is smooth.
If both $f$ and $g$ are diffeomorphisms, we note $(f \circ g)^{-1}$ exists and is equal to $g^{-1} \circ f^{-1}$. However, this is the composition of smooth functions, and (by above) hence smooth. Thus $f \circ g$ is also a diffeomorphism.
8. (a) Via geometric arguments involving similar triangles, we note

$$
\pi(a, b, c)=\left(\frac{a}{1-c}, \frac{b}{1-c}\right) .
$$

We show $\pi$ is smooth by extending it to $\tilde{\pi}: X \rightarrow \mathbb{R}^{2}$ where $X$ is the open set $\left\{(a, b, c) \in \mathbb{R}^{3} \mid-1<c<1\right\}$ and

$$
\tilde{\pi}(a, b, c)=\left(\frac{a}{1-c}, \frac{b}{1-c}\right) .
$$

As $\tilde{\pi}$ is clearly the composition of smooth maps defined on open sets, it is smooth, and hence so is $\pi$.
To derive the inverse of $\pi$, observe

$$
\left(\frac{a}{1-c}\right)^{2}+\left(\frac{b}{1-c}\right)^{2}=\frac{1-c^{2}}{(1-c)^{2}}=\frac{1+c}{1-c} .
$$

In other words, if $\pi(a, b, c)=(x, y)$, then

$$
x^{2}+y^{2}=\frac{1+c}{1-c} \Longrightarrow c=\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1} .
$$

Hence

$$
\pi^{-1}(x, y)=\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right)
$$

which is once again the composition of smooth maps defined on open sets. Therefore $\pi$ is a diffeomorphism.
(b) Suppose $p=\left(x_{1}, x_{2}, \cdots, x_{k+1}\right) \in S^{k}$. Then we define the stereographic projection $\pi_{k}: S^{k} \backslash\{N\} \rightarrow \mathbb{R}^{k}$ as

$$
\pi_{k}(p)=\left(\frac{x_{1}}{1-x_{k+1}}, \frac{x_{2}}{1-x_{k+1}}, \cdots, \frac{x_{k}}{1-x_{k+1}}\right) .
$$

9. 
10. (a) Usual topology. As the neighborhood of every rational number contains an irrational number, thus $\bar{S}=\mathbb{R}$.
Trivial topology. The smallest closed set that is nonempty is $\mathbb{R}$, hence the closure is $\mathbb{R}$.
Discrete Topology. Note in the discrete topology, every set is closed, hence $\bar{S}=S$.
(b) Consider the cocountable topology, which has opens which are complements of finite or countable sets in $\mathbb{R}$ (together with the empty set). Take $S$ as above. Then as $S$ is uncountable but all closed sets other than $\mathbb{R}=\mathbb{R} \backslash \emptyset$ itself are countable, the only closed set containing $S$ is $\mathbb{R}$, so $\bar{S}=\mathbb{R}$. On the other hand, the closure of any countable set $C$ is $C$ itself, so (as the limit of a sequence is an element of its closure), no sequence of elements of $S$ can have a limit point outside of $S$.
