
Math 141 Homework 1

October 6, 2019

1.

2. Hatcher 2, 3.

2(a) Suppose open set U is contained in A. Then for every x ∈ U , A is a neighborhood
of x, implying that x ∈ int(A). Hence U ⊂ int(A) and int(A) is the largest open set
contained by A.

2(b) Suppose A is contained in closed set E and x is a limit point of A. Then x is a limit
point of E, and as E is closed, it contains its own limit points. Hence Ā ⊂ E and Ā
is the smallest closed set containing A.

Note. The results of 2(a) and 2(b) will be used frequently in this homework without
explicit reference.

3. Note ∅ and R are in O.

For Ia, Ib ∈ O, note Ia ∩ Ib = I max(a,b). Hence O is closed under finite intersections.

Let S ⊂ R ∪ {−∞,∞}. Then ⋃
s∈S

Is = Iinf(S)

which always exists because R ∪ {−∞,∞} is a complete totally ordered set (“the
least upper bound property”). Hence O is a topology.

Recall the closure of a set A ⊂ R is the smallest closed set containing A. Thus the
closure of A under topology O is (−∞, sup(A)].

3. Hatcher 4, 5.

4(a) Suppose x ∈ X − A. Then every open neighborhood containing x contains some
element of X − A. Thus x 6∈ int(A), which implies x ∈ X − int(A).

Conversely suppose x ∈ X − int(A). Then x 6∈ int(A), which implies every open set
containing x contains some element of X − A. Thus x ∈ X − A.

4(b) Suppose x ∈ int(X − A). Then there exists an open neighborhood of x containing
only elements from X−A, which implies x in not in the closure of A, i.e. x ∈ X−Ā.

Conversely, if x 6∈ Ā, then there exists a open neighborhood of x in X − A, i.e.
x ∈ int(X − A).

5(a) As A ∪B ⊂ Ā ∪ B̄ and Ā ∪ B̄ is closed, thus A ∪B ⊂ Ā ∪ B̄ (by exercise 2).

Conversely, the limit points of A are also the limit points of A∪B. Hence Ā ⊂ A ∪B
and likewise B̄ ⊂ A ∪B. Hence Ā ∪ B̄ ⊂ A ∪B.
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5(b) As A ∩B ⊂ Ā ∩ B̄ and Ā ∩ B̄ is closed, thus A ∩B ⊂ Ā ∩ B̄.

As an counterexample for equality, consider the sets A = [0, 1) and B = (1, 2]. Then
A ∩B = ∅ but Ā ∩ B̄ = {1}.

5(c) As int(A) ∩ int(B) ⊂ A ∩ B and int(A) ∩ int(B) is open, hence int(A) ∩ int(B) ⊂
int(A ∩B).

Conversely, we note int(A ∩ B) ⊂ int(A) and likewise for the roles of A and B
switched, hence int(A ∩B) ⊂ int(A) ∩ int(B).

5(d) As int(A) ⊂ int(A∪B) and int(B) ⊂ int(A∪B), thus int(A)∪ int(B) ⊂ int(A∪B).

As an counterexample for equality, consider the sets A = (0, 1] and B = [1, 2). Then
int(A) ∪ int(B) = (0, 1) ∪ (1, 2). However, int(A ∪B) = (0, 2).

4. Hatcher 7, 8.

7. Suppose X has a topology S. Then the topology of Y is T = {Y ∩ S|S ∈ S}. As
Z is a subspace of Y , thus the topology of Z is {Z ∩ T |T ∈ T } = {Z ∩ Y ∩ S|S ∈
S} = {Z ∩ S|S ∈ S}, that is, Z has the subspace topology in X.

8. Recall the subspace topology of a metric space agrees with the topology generated
by the metric restricted to that subspace.

If O is open in the subspace topology, that means for each x ∈ O, there exists an
open ball of radius ε centered at x in metric space A such that every point in the
ball is contained in O. This is equivalent to saying that there exists an open ball of
radius ε centered at x in metric space R2 such that every point in A is also in O.

Conversely, suppose for each point x ∈ O, there exists ε > 0 such that every point in
A that is ε-close to x is in O. This means the open ball centered at x with radius ε
intersected with A is contained in O. By definition of subspace topology, this implies
O is a neighborhood of x, hence O is open in A.

5. (a) Consider the family of open disks of radius 1 centered on the lattice points of R2.
As this is an open cover with no finite subcover, R2 is not compact.

(b) Recall tan(x) : (−π
2
, π
2
)→ R is a continuous function. Thus we can define a continu-

ous function f : R× (0, 1)→ R2 by

f(a, b) = (a, tan(πb− π

2
)).

(Note we have used the property that the composition of continuous functions is
continuous). Similarly, we can define a continuous function g : R2 → R× (0, 1) by

g(a, b) = (a,
arctan(b)

π
+

1

2
).

It is easy to see that
f ◦ g = g ◦ f = I

hence f is a homeomorphism. From problem 6, we deduce that as R2 is not compact,
then so isn’t R× (0, 1).

2



6. Suppose {Vi}i∈I is an open cover of f(X). As f is continuous, thus {f−1(Vi)}i∈I is an open
cover ofX. AsX is compact, we choose a finite subcover f−1(Va1), f

−1(Va2), · · · , f−1(Van).
Then Va1 , Va2 , · · · , Van is a finite subcover of {Vi}i∈I . Hence f(X) is compact.

7. (a) We denote {(a1, · · · , ak, 0, · · · , 0)} as the set X ⊂ Rl. Define ι : Rk → X to be the
(obvious) diffeomorphism

ι(a1, · · · , ak) = (a1, · · · , ak, 0, · · · , 0),

and π : Rl → Rk to be the smooth map

π((a1, · · · , al)) = (a1, · · · , ak).

Suppose f = f(a1, · · · , ak) is some smooth function defined on Rn. Define g on Rl

by
g(x) = f ◦ π(x).

which is smooth as it is the composition of smooth maps on open sets. Thus the
restriction of g onto X is smooth. Similarly, for any smooth function g on X, we
have the corresponding function

f(y) = g ◦ ι(y).

As there exists smooth function g̃ defined in a open neighborhood of ι(y) that agrees
with g, we again note that the composition of smooth maps on open sets are smooth
and deduce that f is locally smooth, and hence smooth. Therefore the smooth
functions on Rk considered as a subset of Rl are the “same” as usual.

(b) Let f be a smooth map on X. For any z ∈ Z, as z ∈ X, there exists open set U in
RN and smooth map f̃ defined on U that agrees with f on X ∩ U . Thus f̃ agrees
with the restriction of f to Z on the set Z ∩ U , implying that f |Z is a smooth map
on Z.

(c) Given any x ∈ X, let V be an open neighborhood of f(x) in RM such that there
exists smooth map g̃ defined on V which agrees with g on Y ∩ V . By definition,
there are open neighborhoods U of x such that there exists smooth map f̃ defined on
U which agrees with f in U ∩X. As f is continuous, we can make U small enough
such that range of f̃ is contained in V . Note g̃ ◦ f̃ agrees with g ◦ f in U ∩X and is
smooth. Hence g ◦ f is smooth.

If both f and g are diffeomorphisms, we note (f ◦g)−1 exists and is equal to g−1◦f−1.
However, this is the composition of smooth functions, and (by above) hence smooth.
Thus f ◦ g is also a diffeomorphism.

8. (a) Via geometric arguments involving similar triangles, we note

π(a, b, c) =
( a

1− c
,

b

1− c

)
.

We show π is smooth by extending it to π̃ : X → R2 where X is the open set
{(a, b, c) ∈ R3| − 1 < c < 1} and

π̃(a, b, c) =
( a

1− c
,

b

1− c

)
.
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As π̃ is clearly the composition of smooth maps defined on open sets, it is smooth,
and hence so is π.

To derive the inverse of π, observe( a

1− c

)2
+
( b

1− c

)2
=

1− c2

(1− c)2
=

1 + c

1− c
.

In other words, if π(a, b, c) = (x, y), then

x2 + y2 =
1 + c

1− c
=⇒ c =

x2 + y2 − 1

x2 + y2 + 1
.

Hence

π−1(x, y) =
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
which is once again the composition of smooth maps defined on open sets. Therefore
π is a diffeomorphism.

(b) Suppose p = (x1, x2, · · · , xk+1) ∈ Sk. Then we define the stereographic projection
πk : Sk\{N} → Rk as

πk(p) =
( x1

1− xk+1

,
x2

1− xk+1

, · · · , xk
1− xk+1

)
.

9.

10. (a) Usual topology. As the neighborhood of every rational number contains an irra-
tional number, thus S̄ = R.

Trivial topology. The smallest closed set that is nonempty is R, hence the closure
is R.

Discrete Topology. Note in the discrete topology, every set is closed, hence S̄ = S.

(b) Consider the cocountable topology, which has opens which are complements of finite
or countable sets in R (together with the empty set). Take S as above. Then as
S is uncountable but all closed sets other than R = R \ ∅ itself are countable, the
only closed set containing S is R, so S̄ = R. On the other hand, the closure of any
countable set C is C itself, so (as the limit of a sequence is an element of its closure),
no sequence of elements of S can have a limit point outside of S.
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