1.

Math 141 Homework 1

October 6, 2019

2. Hatcher 2, 3.

2(a)

2(b)

Suppose open set U is contained in A. Then for every z € U, A is a neighborhood
of z, implying that x € int(A). Hence U C int(A) and int(A) is the largest open set
contained by A.

Suppose A is contained in closed set E and x is a limit point of A. Then x is a limit
point of E, and as E is closed, it contains its own limit points. Hence A C E and A
is the smallest closed set containing A.

Note. The results of 2(a) and 2(b) will be used frequently in this homework without
explicit reference.

. Note ) and R are in O.

For I,, I, € O, note I, N I = I yax(ap)- Hence O is closed under finite intersections.
Let S C RU{—00,00}. Then
U I, = [inf(S)

seS

which always exists because R U {—o0, 00} is a complete totally ordered set (“the
least upper bound property”). Hence O is a topology.

Recall the closure of a set A C R is the smallest closed set containing A. Thus the
closure of A under topology O is (—oo,sup(A)].

3. Hatcher 4, 5.

4(a)

Suppose z € X — A. Then every open neighborhood containing = contains some
element of X — A. Thus = ¢ int(A), which implies z € X — int(A).

Conversely suppose € X — int(A). Then = ¢ int(A), which implies every open set
containing = contains some element of X — A. Thus z € X — A.

Suppose = € int(X — A). Then there exists an open neighborhood of = containing
only elements from X — A, which implies = in not in the closure of A4, i.e. z € X — A.

Conversely, if x ¢ A, then there exists a open neighborhood of z in X — A, i.e.
z € int(X — A).
As AUB C AUB and AU B is closed, thus AU B C AU B (by exercise 2).

Conversely, the limit points of A are also the limit points of AUB. Hence ACAUB
and likewise B C AU B. Hence AUB C AU B.



5(b)

As ANBC AN B and AN B is closed, thus AN B C AN B.

As an counterexample for equality, consider the sets A = [0,1) and B = (1,2]. Then
ANB=0but ANB = {1}.

As int(A) Nint(B) € AN B and int(A) Nint(B) is open, hence int(A) Nint(B) C
int(AN B).

Conversely, we note int(A N B) C int(A) and likewise for the roles of A and B
switched, hence int(A N B) C int(A) Nint(B).

As int(A) C int(AU B) and int(B) C int(AU B), thus int(A) Uint(B) C int(AU B).
As an counterexample for equality, consider the sets A = (0,1] and B = [1,2). Then
int(A) Uint(B) = (0,1) U (1,2). However, int(AU B) = (0, 2).

4. Hatcher 7, 8.

7.

Suppose X has a topology S. Then the topology of Y is T = {Y N S|S € S§}. As
Z is a subspace of Y, thus the topology of Z is {ZNT|T € T} ={ZNnYNS|S €
S} ={ZnNS|S € S}, that is, Z has the subspace topology in X.

Recall the subspace topology of a metric space agrees with the topology generated
by the metric restricted to that subspace.

If O is open in the subspace topology, that means for each x € O, there exists an
open ball of radius € centered at x in metric space A such that every point in the
ball is contained in O. This is equivalent to saying that there exists an open ball of
radius € centered at x in metric space R? such that every point in A is also in O.

Conversely, suppose for each point x € O, there exists € > 0 such that every point in
A that is e-close to x is in O. This means the open ball centered at x with radius &
intersected with A is contained in O. By definition of subspace topology, this implies
O is a neighborhood of x, hence O is open in A.

Consider the family of open disks of radius 1 centered on the lattice points of R2.
As this is an open cover with no finite subcover, R? is not compact.

Recall tan(z) : (55, 5) — R is a continuous function. Thus we can define a continu-

ous function f: R x (0,1) — R? by

f(a,b) = (a, tan(mb — 5))

(Note we have used the property that the composition of continuous functions is
continuous). Similarly, we can define a continuous function g : R* — R x (0,1) by

arctan(b) 1
b g _— — ).
gla,b) = (a, T 4 )
It is easy to see that
fog=gof=1I

hence f is a homeomorphism. From problem 6, we deduce that as R? is not compact,
then so isn’t R x (0, 1).



6. Suppose {V;}icr is an open cover of f(X). As f is continuous, thus { f~(V;) }s¢s is an open
cover of X. As X is compact, we choose a finite subcover f=*(V,,), f=*(Va,)s -+ 5 [ (Va,)-
Then V,,, Va,, -+, Va, is a finite subcover of {V;};c;. Hence f(X) is compact.

7. (a)

We denote {(a1,--- ,a,0,---,0)} as the set X C R!. Define ¢ : R¥ — X to be the
(obvious) diffeomorphism

L(ala"' aak) = (aly"' 7aka07"' 7O)a
and 7 : RY — R¥ to be the smooth map
W((a'h' ne ,Cll)) - (ala e 7ak)'

Suppose f = f(ay, - ,ay) is some smooth function defined on R"™. Define g on R!
by

g(x) = fom(x).
which is smooth as it is the composition of smooth maps on open sets. Thus the

restriction of g onto X is smooth. Similarly, for any smooth function g on X, we
have the corresponding function

fy) =gouy).

As there exists smooth function § defined in a open neighborhood of ¢(y) that agrees
with g, we again note that the composition of smooth maps on open sets are smooth
and deduce that f is locally smooth, and hence smooth. Therefore the smooth
functions on R* considered as a subset of R! are the “same” as usual.

Let f be a smooth map on X. For any z € Z, as z € X, there exists open set U in
RY and smooth map f defined on U that agrees with f on X NU. Thus f agrees
with the restriction of f to Z on the set Z N U, implying that f|z is a smooth map
on Z.

Given any # € X, let V be an open neighborhood of f(x) in R™ such that there
exists smooth map ¢ defined on V which agrees with ¢ on Y N'V. By definition,
there are open neighborhoods U of x such that there exists smooth map f defined on
U which agrees with f in U N X. As f is continuous, we can make U small enough
such that range of f' is contained in V. Note g o f agrees with go f in U N X and is
smooth. Hence g o f is smooth.

If both f and g are diffeomorphisms, we note (fog)~! exists and is equal to g~ 1o f~1.
However, this is the composition of smooth functions, and (by above) hence smooth.
Thus f o g is also a diffeomorphism.

Via geometric arguments involving similar triangles, we note

7r(a,b,c)=< ¢ b >

1-c'1-c

We show 7 is smooth by extending it to @ : X — R? where X is the open set
{(a,b,c) eR?*| —1 < ¢ < 1} and

ﬁ(a,b,c)z( ¢ b )

1l—c'1—¢c
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As 7 is clearly the composition of smooth maps defined on open sets, it is smooth,
and hence so is 7.

To derive the inverse of w, observe

<1ic>2+<1ic>2:(1:32:?:2'

In other words, if 7(a, b, c) = (z,y), then

2, 2 Lte ?4y? -1
x = c=—F—5—".
O 2+ y?+1
Hence s
W’l(x y):< 2x 2y Tt +y —1)
’ e Tl o e T S R e o el |

which is once again the composition of smooth maps defined on open sets. Therefore
7 is a diffeomorphism.

Suppose p = (21,22, - ,2p41) € S*. Then we define the stereographic projection
et SP\{N} — R* as

m(p) = (

T1 Lo Tk )

3 ) T
I —2p1 1= I =g

Usual topology. As the neighborhood of every rational number contains an irra-
tional number, thus S = R.

Trivial topology. The smallest closed set that is nonempty is R, hence the closure
is R.
Discrete Topology. Note in the discrete topology, every set is closed, hence S = S.

Consider the cocountable topology, which has opens which are complements of finite
or countable sets in R (together with the empty set). Take S as above. Then as
S is uncountable but all closed sets other than R = R\ () itself are countable, the
only closed set containing S is R, so S = R. On the other hand, the closure of any
countable set C'is C itself, so (as the limit of a sequence is an element of its closure),
no sequence of elements of S can have a limit point outside of S.



