Math 141 Homework #10 and #11

Vaintrob, 12/3/19

1 Homework 10

1, GP 2.4.1. Prove there exists a complex number z such that $f(z) := z^7 + \cos(|z^2|)(1+93z^4)$ is equal to 0. **Solution**: Write $D_N^2 := \{z \mid |z| \le N\} \subset \mathbb{C}$ for the closed disk of radius N and S_N^2 for its boundary, $S_N^2 = \partial X$, the circle of radius N. By looking at the asymptotics, it is clear that for large enough real N, if $|z| \ge N$ then

 $|z^{7}| > \cos(|z^{2}|)(1+93z^{4}).$

This implies that, defining $f_t(z) := z^7 + t \cos(|z^2|)(1 + 93z^4)$ gives a homotopy between f(z) and z^7 which never equals to zero on $S_N^2 = \partial D_N^2$. From the book, the mod 2 winding number of z^7 , when viewed as a function from any circle in \mathbb{C} centered at zero, is 1. As f_t is a homotopy between $f \mid S_N^2$ and $z^7 \mid S_N^2$ as maps $S_N^2 \to \mathbb{C} \setminus \{0\}$, their winding numbers (which are intersection numbers in $\mathbb{C} \setminus 0$) are equal, so $W_2(f) \mid S_N^2 = 1$. This implies that $f \mid D_N^2$ has 0 in its image. (To see this, you can use the proposition on page 81).

2. GP 2.4.3. Suppose that X and Z are compact manifolds and that $f: X \to Y$, and $g: Z \to Y$ are smooth maps into the manifold Y. If dim X + dim Z = dim Y, we can define the mod 2 transection number of f and g by $I_2(f,g)=I_2(f \times g, \Delta)$ where Δ is the diagonal of $Y \times Y$.

(a) Prove that $I_2(f,g)$ is unaltered if either f or g is varied by a homotopy.

Solution. Suppose f' and g' are homotopic to f and g respectively. Then, from an exercise in chapter 1.6 $f \times g$ is homotopic to $f' \times g'$. Since intersection number is invariant under homotopy, we have that $I_2(f \times g, \Delta) = I_2(f' \times g'\Delta)$. Therefore, $I_2(f,g)$ is unaltered if either f or g is varied by a homotopy.

(b) Check that $I_2(f,g) = I_2(g,f)$.

solution Let $Y' = Y \times Y$. By the hint, define $s : Y' \to Y'$ as $s : (x, y) \to (y, x)$. Then considered the sequence of maps between manifolds $Y' \xrightarrow{f \times g} Y' \xrightarrow{s} Y'$. By the result of exercise 2, we know that

 $I_2(f \times g, s^{-1}(\Delta)) = I_2(s \circ (f \times g), \Delta)$

Since $s^{-1}(\Delta) = \Delta$ and $s \circ (f \times g) = g \times f$, we have that $I_2(f \times g, \Delta) = I_2(g \times f, \Delta)$.

(c) If Z is actually a submanifold of Y and $i: Z \to Y$ is its inclusion, show that

$$I_2(f,i) = I_2(f,Z)$$

Solution Since i is the inclusion map, we have that Im(i) = Z. Therefore, $I_2(f,i) = \#f^{-1}(f(X) \cap i(Z)) = f^{-1}(f(X) \cap Z) = I_2(f,Z)$.

(d) Solution If $X \oplus Z$, then the result is trivially true. Assume X is not transversal to Z. From part (c), we know that $I_2(Z, X) = I_2(i_z, X)$ where $i_z : Z \to Y$ is the inclusion map from Z to Y and $I_2(Z, X) = I_2(Z, i_x)$ where $i_x : X \to Y$ is the inclusion map from X to Y. Then, there exists $i'_z : Z \to Y$ homotopic to i_z with the additional property that $i'_z \pitchfork Z$. Similarly, there exists $i'_x : X \to Y$ homotopic to i_x with the additional property that $i'_x \pitchfork Z$. Hence, $I_2(i'_z, i'_x)$ is defined.

From part(a) we know that $I_2(i_z, i_x) = I_2(i'_z, i'_x)$. From part (b), we have $I_2(i'_z, i'_x) = I_2(i'_x, i'_z) = I_2(X, Z)$. Finally, combining all the parts together, we have thus shown that $I_2(X, Z) = I_2(Z, X)$.

3, **GP** 2.4.5. Prove that intersection theory is vacuous in contractable manifolds: if Y is contractable and dim Y > 0, then $I_2(f, Z) = 0$ for every $f : X \to Y, X$ compact and Z closed, dim $X + \dim Z = \dim Y$. (No dimension-zero anomalies here). In particular, intersection theory is vacuous in Euclidean space.

Solution: Assume $f : X \to Y$ where X is compact and Y is contractable, and we have some $Z \subset Y$ and X and Z had dimensions adding up to Y. Let $I_Y : Y \to Y$, which by definition of contractable, we know is homotopic to some c a constant function. Then, $I_2(f, Z) = I_2(I_Y \circ f, Z) = I_2(c \circ f, Z) = I_2(c, Z) = I_2(c \circ g, Z) = I_2(I_Y \circ g, Z) = I_2(g, Z)$ for any $g : X \to Y$. Further, these values all are 0 since we can always deform the constant function so that it does not intersect Z by choosing some point of Y not in Z. Note that Euclidean space is contractable, and thus this is also true in Euclidean space.

4, GP 2.4.6. Prove that no compact manifold – other than the one-point space – is contractable.

Solution: Assume there is some M that is a compact manifold that is not the one-point space but is contractable. Let $i: M \to Y$ be the inclusion map, and $Z = \{p\}$ for some point $p \in Y$. Then, by exercise 5, $I_2(i, Z) = 0$, however that is not possible because $i(Y) \cap Z = Y \cap Z = Z \neq \emptyset$. The intersection is exactly one point so it is 1 mod 2. Thus, we have a contradiction.

2 Homework 11

1. (G.P 2.4.9) Suppose $f : X \to S^k$ is smooth, where X is compact and $0 < \dim X < k$. Then for all closed $Z \subset S^k$ of dimension complementary to X, $I_2(X, Z) = 0$. [HINT: By Sard, there exists $p \notin f(X) \cap Z$. Use stereographic projection, plus Exercise 5]

Solution. Suppose $y \in f(X) \cap Z$ and f(x) = y. Since $0 < \dim X < k$, we have that $\dim(df_x(X)) < k = \dim(T_y(S^k))$, i.e $df_x(X) \neq T_y(S^k)$. Therefore, all points in $f(X) \cap Z$ are critical values. By Sard, there has to exist $p \notin f(X) \cap Z$.

By the hint, consider the stereographic projection $P: S^k \to R^k$ from a point $p \in S^k$ and $p \notin f(X) \cap Z$. Let $g: X \to R^k = P \circ f$. For each point x in $f(X) \cap Z$, we can project it to g(x) in R^k . Since P is injective and smooth, P(Z) is a closed submanifold of R^k of the same dimension as Z. Because R^k is contractable, X compact, Z closed with complementary dimension, we have that $I_2(g, P(Z)) = 0 \mod 2$ by Exercise 5. Since $g^{-1}(P(Z)) = f^{-1}(Z)$, we conclude that $I_2(f, Z) = I_2(g, P(Z)) = 0 \mod 2$.

2. (G.P 2.4.10) Prove that S^2 and the torus are not diffeomorphic.

Solution. Without loss of generality, suppose S^2 and the torus are both centered at (0,0,0) and the torus is xy-plane aligned (see the picture below). Then, consider the circles of radii 1, P_1 centered at (1,0,0), P_2 centered at (-1,0,0). Then $I_2(P_1,P_2) = 1 \mod 2$ since the they intersect only at (0,0,0). On the other hand, let C_1, C_2 be two curves in S^2 . Let $f : C_1 \to S^2$ be the inclusion map. Since C_1 compact, C_2 closed and $\dim C_1 + \dim C_2 = 1 + 1 = 2$, by Exercise 9, we have that $I_2(C_1, C_2) = 0 \mod 2$. As a result, S^2 and the torus are not diffeomorphic.