Math 141 Homework \#10 and \#11

Vaintrob, 12/3/19

1 Homework 10

1, GP 2.4.1. Prove there exists a complex number z such that $f(z):=z^{7}+\cos \left(\left|z^{2}\right|\right)\left(1+93 z^{4}\right)$ is equal to 0 . Solution: Write $D_{N}^{2}:=\{z| | z \mid \leq N\} \subset \mathbb{C}$ for the closed disk of radius N and S_{N}^{2} for its boundary, $S_{N}^{2}=\partial X$, the circle of radius N. By looking at the asymptotics, it is clear that for large enough real N, if $|z| \geq N$ then

$$
\left|z^{7}\right|>\cos \left(\left|z^{2}\right|\right)\left(1+93 z^{4}\right) .
$$

This implies that, defining $f_{t}(z):=z^{7}+t \cos \left(\left|z^{2}\right|\right)\left(1+93 z^{4}\right)$ gives a homotopy between $f(z)$ and z^{7} which never equals to zero on $S_{N}^{2}=\partial D_{N}^{2}$. From the book, the mod 2 winding number of z^{7}, when viewed as a function from any circle in \mathbb{C} centered at zero, is 1 . As f_{t} is a homotopy between $f \mid S_{N}^{2}$ and $z^{7} \mid S_{N}^{2}$ as maps $S_{N}^{2} \rightarrow \mathbb{C} \backslash\{0\}$, their winding numbers (which are intersection numbers in $\mathbb{C} \backslash 0$) are equal, so $W_{2}(f) \mid S_{N}^{2}=1$. This implies that $f \mid D_{N}^{2}$ has 0 in its image. (To see this, you can use the proposition on page 81).
2. GP 2.4.3. Suppose that X and Z are compact manifolds and that $f: X \rightarrow Y$, and $g: Z \rightarrow Y$ are smooth maps into the manifold Y. If $\operatorname{dim} X+\operatorname{dim} Z=\operatorname{dim} Y$, we can define the $\bmod 2$ transection number of f and g by $I_{2}(f, g)=I_{2}(f \times g, \Delta)$ where Δ is the diagonal of $Y \times Y$.
(a) Prove that $I_{2}(f, g)$ is unaltered if either f or g is varied by a homotopy.

Solution. Suppose f^{\prime} and g^{\prime} are homotopic to f and g respectively. Then, from an exercise in chapter $1.6 f \times g$ is homotopic to $f^{\prime} \times g^{\prime}$. Since intersection number is invariant under homotopy, we have that $I_{2}(f \times g, \Delta)=I_{2}\left(f^{\prime} \times g^{\prime} \Delta\right)$. Therefore, $I_{2}(f, g)$ is unaltered if either f or g is varied by a homotopy.
(b) Check that $I_{2}(f, g)=I_{2}(g, f)$.
solution Let $Y^{\prime}=Y \times Y$. By the hint, define $s: Y^{\prime} \rightarrow Y^{\prime}$ as $s:(x, y) \rightarrow(y, x)$. Then considered the sequence of maps between manifolds $Y^{\prime} \xrightarrow{f \times g} Y^{\prime} \xrightarrow{s} Y^{\prime}$. By the result of exercise 2, we know that

$$
I_{2}\left(f \times g, s^{-1}(\Delta)\right)=I_{2}(s \circ(f \times g), \Delta)
$$

Since $s^{-1}(\Delta)=\Delta$ and $s \circ(f \times g)=g \times f$, we have that $I_{2}(f \times g, \Delta)=I_{2}(g \times f, \Delta)$.
(c) If Z is actually a submanifold of Y and $i: Z \rightarrow Y$ is its inclusion, show that

$$
I_{2}(f, i)=I_{2}(f, Z)
$$

Solution Since i is the inclusion map, we have that $\operatorname{Im}(i)=Z$. Therefore, $I_{2}(f, i)=\# f^{-1}(f(X) \cap i(Z))=$ $f^{-1}(f(X) \cap Z)=I_{2}(f, Z)$.
(d)

Solution
If $X \pitchfork Z$, then the result is trivially true.

Assume X is not transversal to Z. From part (c), we know that $I_{2}(Z, X)=I_{2}\left(i_{z}, X\right)$ where $i_{z}: Z \rightarrow Y$ is the inclusion map from Z to Y and $I_{2}(Z, X)=I_{2}\left(Z, i_{x}\right)$ where $i_{x}: X \rightarrow Y$ is the inclusion map from X to Y. Then, there exists $i_{z}^{\prime}: Z \rightarrow Y$ homotopic to i_{z} with the additional property that $i_{z}^{\prime} \pitchfork Z$. Similarly, there exists $i_{x}^{\prime}: X \rightarrow Y$ homotopic to i_{x} with the additional property that $i_{x}^{\prime} \pitchfork Z$. Hence, $I_{2}\left(i_{z}^{\prime}, i_{x}^{\prime}\right)$ is defined.

From part(a) we know that $I_{2}\left(i_{z}, i_{x}\right)=I_{2}\left(i_{z}^{\prime}, i_{x}^{\prime}\right)$. From part (b), we have $I_{2}\left(i_{z}^{\prime}, i_{x}^{\prime}\right)=I_{2}\left(i_{x}^{\prime}, i_{z}^{\prime}\right)=I_{2}(X, Z)$. Finally, combining all the parts together, we have thus shown that $I_{2}(X, Z)=I_{2}(Z, X)$.

3, GP 2.4.5. Prove that intersection theory is vacuous in contractable manifolds: if Y is contractable and $\operatorname{dim} Y>$ 0 , then $I_{2}(f, Z)=0$ for every $f: X \rightarrow Y, X$ compact and Z closed, $\operatorname{dim} X+\operatorname{dim} Z=\operatorname{dim} Y$. (No dimension-zero anomalies here). In particular, intersection theory is vacuous in Euclidean space.

Solution: Assume $f: X \rightarrow Y$ where X is compact and Y is contractable, and we have some $Z \subset Y$ and X and Z had dimensions adding up to Y. Let $I_{Y}: Y \rightarrow Y$, which by definition of contractable, we know is homotopic to some c a constant function. Then, $I_{2}(f, Z)=I_{2}\left(I_{Y} \circ f, Z\right)=I_{2}(c \circ f, Z)=I_{2}(c, Z)=I_{2}(c \circ g, Z)=$ $I_{2}\left(I_{Y} \circ g, Z\right)=I_{2}(g, Z)$ for any $g: X \rightarrow Y$. Further, these values all are 0 since we can always deform the constant function so that it does not intersect Z by choosing some point of Y not in Z. Note that Euclidean space is contractable, and thus this is also true in Euclidean space.

4, GP 2.4.6. Prove that no compact manifold - other than the one-point space - is contractable.
Solution: Assume there is some M that is a compact manifold that is not the one-point space but is contractable. Let $i: M \rightarrow Y$ be the inclusion map, and $Z=\{p\}$ for some point $p \in Y$. Then, by exercise 5 , $I_{2}(i, Z)=0$, however that is not possible because $i(Y) \cap Z=Y \cap Z=Z \neq \emptyset$. The intersection is exactly one point so it is $1 \bmod 2$. Thus, we have a contradiction.

2 Homework 11

1. (G.P 2.4.9) Suppose $f: X \rightarrow S^{k}$ is smooth, where X is compact and $0<\operatorname{dim} X<k$. Then for all closed $Z \subset S^{k}$ of dimension complementary to $X, I_{2}(X, Z)=0$. [HINT: By Sard, there exists $p \notin f(X) \cap Z$. Use stereographic projection, plus Exercise 5]

Solution. Suppose $y \in f(X) \cap Z$ and $f(x)=y$. Since $0<\operatorname{dim} X<k$, we have that $\operatorname{dim}\left(d f_{x}(X)\right)<k=$ $\operatorname{dim}\left(T_{y}\left(S^{k}\right)\right)$, i.e $d f_{x}(X) \neq T_{y}\left(S^{k}\right)$. Therefore, all points in $f(X) \cap Z$ are critical values. By Sard, there has to exist $p \notin f(X) \cap Z$.

By the hint, consider the stereographic projection $P: S^{k} \rightarrow R^{k}$ from a point $p \in S^{k}$ and $p \notin f(X) \cap Z$. Let $g: X \rightarrow R^{k}=P \circ f$. For each point x in $f(X) \cap Z$, we can project it to $g(x)$ in R^{k}. Since P is injective and smooth, $P(Z)$ is a closed submanifold of R^{k} of the same dimension as Z. Because R^{k} is contractable, X compact, Z closed with complementary dimension, we have that $I_{2}(g, P(Z))=0 \bmod 2$ by Exercise 5 . Since $g^{-1}(P(Z))=$ $f^{-1}(Z)$, we conclude that $I_{2}(f, Z)=I_{2}(g, P(Z))=0 \bmod 2$.
2. (G.P 2.4.10) Prove that S^{2} and the torus are not diffeomorphic.

Solution. Without loss of generality, suppose S^{2} and the torus are both centered at $(0,0,0)$ and the torus is xy-plane aligned (see the picture below). Then, consider the circles of radii $1, P_{1}$ centered at $(1,0,0), P_{2}$ centered at $(-1,0,0)$. Then $I_{2}\left(P_{1}, P_{2}\right)=1 \bmod 2$ since the they intersect only at $(0,0,0)$. On the other hand, let C_{1}, C_{2} be two curves in S^{2}. Let $f: C_{1} \rightarrow S^{2}$ be the inclusion map. Since C_{1} compact, C_{2} closed and $\operatorname{dim} C_{1}+\operatorname{dim} C_{2}=1+1=2$, by Exercise 9, we have that $I_{2}\left(C_{1}, C_{2}\right)=0 \bmod 2$. As a result, S^{2} and the torus are not diffeomorphic.

