
Math 141 Homework #10 and #11

Vaintrob, 12/3/19

1 Homework 10

1, GP 2.4.1. Prove there exists a complex number z such that f(z) := z7 + cos(|z2|)(1 + 93z4) is equal to 0.
Solution: Write D2

N := {z | |z| ≤ N} ⊂ C for the closed disk of radius N and S2
N for its boundary, S2

N = ∂X,
the circle of radius N . By looking at the asymptotics, it is clear that for large enough real N , if |z| ≥ N then

|z7| > cos(|z2|)(1 + 93z4).

This implies that, defining ft(z) := z7 + t cos(|z2|)(1 + 93z4) gives a homotopy between f(z) and z7 which never
equals to zero on S2

N = ∂D2
N . From the book, the mod 2 winding number of z7, when viewed as a function from

any circle in C centered at zero, is 1. As ft is a homotopy between f | S2
N and z7 | S2

N as maps S2
N → C \ {0},

their winding numbers (which are intersection numbers in C \ 0) are equal, so W2(f) | S2
N = 1. This implies that

f | D2
N has 0 in its image. (To see this, you can use the proposition on page 81).

2. GP 2.4.3. Suppose that X and Z are compact manifolds and that f : X → Y , and g : Z → Y are smooth
maps into the manifold Y . If dimX + dimZ = dimY , we can define the mod 2 transection number of f and g by
I2(f, g)=I2(f × g,∆) where ∆ is the diagonal of Y × Y .

(a) Prove that I2(f, g) is unaltered if either f or g is varied by a homotopy.

Solution. Suppose f ′ and g′ are homotopic to f and g respectively. Then, from an exercise in chapter 1.6 f×g is ho-
motopic to f ′×g′. Since intersection number is invariant under homotopy, we have that I2(f×g,∆) = I2(f ′×g′∆).
Therefore, I2(f, g) is unaltered if either f or g is varied by a homotopy.

(b) Check that I2(f, g) = I2(g, f).

solution Let Y ′ = Y × Y . By the hint, define s : Y ′ → Y ′ as s : (x, y) → (y, x). Then considered the

sequence of maps between manifolds Y ′
f×g−−−→ Y ′

s−→ Y ′. By the result of exercise 2, we know that

I2(f × g, s−1(∆)) = I2(s ◦ (f × g),∆)

Since s−1(∆) = ∆ and s ◦ (f × g) = g × f , we have that I2(f × g,∆) = I2(g × f,∆).

(c) If Z is actually a submanifold of Y and i : Z → Y is its inclusion, show that

I2(f, i) = I2(f, Z)

Solution Since i is the inclusion map, we have that Im(i) = Z. Therefore, I2(f, i) = #f−1(f(X) ∩ i(Z)) =
f−1(f(X) ∩ Z) = I2(f, Z).

(d)
Solution
If X t Z, then the result is trivially true.
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Assume X is not transversal to Z. From part (c), we know that I2(Z,X) = I2(iz, X) where iz : Z → Y is
the inclusion map from Z to Y and I2(Z,X) = I2(Z, ix) where ix : X → Y is the inclusion map from X to Y .
Then, there exists i′z : Z → Y homotopic to iz with the additional property that i′z t Z. Similarly, there exists
i′x : X → Y homotopic to ix with the additional property that i′x t Z. Hence, I2(i′z, i

′
x) is defined.

From part(a) we know that I2(iz, ix) = I2(i′z, i
′
x). From part (b), we have I2(i′z, i

′
x) = I2(i′x, i

′
z) = I2(X,Z).

Finally, combining all the parts together, we have thus shown that I2(X,Z) = I2(Z,X).

3, GP 2.4.5. Prove that intersection theory is vacuous in contractable manifolds: if Y is contractable and dimY >
0, then I2(f, Z) = 0 for every f : X → Y,X compact and Z closed, dimX + dimZ = dimY. (No dimension-zero
anomalies here). In particular, intersection theory is vacuous in Euclidean space.

Solution: Assume f : X → Y where X is compact and Y is contractable, and we have some Z ⊂ Y and
X and Z had dimensions adding up to Y . Let IY : Y → Y , which by definition of contractable, we know is
homotopic to some c a constant function. Then, I2(f, Z) = I2(IY ◦ f, Z) = I2(c ◦ f, Z) = I2(c, Z) = I2(c ◦ g, Z) =
I2(IY ◦g, Z) = I2(g, Z) for any g : X → Y . Further, these values all are 0 since we can always deform the constant
function so that it does not intersect Z by choosing some point of Y not in Z. Note that Euclidean space is
contractable, and thus this is also true in Euclidean space.

4, GP 2.4.6. Prove that no compact manifold – other than the one-point space – is contractable.

Solution: Assume there is some M that is a compact manifold that is not the one-point space but is con-
tractable. Let i : M → Y be the inclusion map, and Z = {p} for some point p ∈ Y . Then, by exercise 5,
I2(i, Z) = 0, however that is not possible because i(Y ) ∩ Z = Y ∩ Z = Z 6= ∅. The intersection is exactly one
point so it is 1 mod 2. Thus, we have a contradiction.

2 Homework 11

1. (G.P 2.4.9) Suppose f : X → Sk is smooth, where X is compact and 0 < dimX < k. Then for all closed
Z ⊂ Sk of dimension complementary to X, I2(X,Z) = 0. [HINT: By Sard, there exists p /∈ f(X) ∩ Z. Use
stereographic projection, plus Exercise 5]

Solution. Suppose y ∈ f(X) ∩ Z and f(x) = y. Since 0 < dimX < k, we have that dim(dfx(X)) < k =
dim(Ty(Sk)), i.e dfx(X) 6= Ty(Sk). Therefore, all points in f(X) ∩ Z are critical values. By Sard, there has to
exist p /∈ f(X) ∩ Z.

By the hint, consider the stereographic projection P : Sk → Rk from a point p ∈ Sk and p /∈ f(X) ∩ Z.
Let g : X → Rk = P ◦ f . For each point x in f(X) ∩ Z, we can project it to g(x) in Rk. Since P is injective and
smooth, P (Z) is a closed submanifold of Rk of the same dimension as Z. Because Rk is contractable, X compact,
Z closed with complementary dimension, we have that I2(g, P (Z)) = 0 mod 2 by Exercise 5. Since g−1(P (Z)) =
f−1(Z), we conclude that I2(f, Z) = I2(g, P (Z)) = 0 mod 2.

2. (G.P 2.4.10) Prove that S2 and the torus are not diffeomorphic.

Solution. Without loss of generality, suppose S2 and the torus are both centered at (0, 0, 0) and the torus is
xy-plane aligned (see the picture below). Then, consider the circles of radii 1, P1 centered at (1, 0, 0), P2 cen-
tered at (−1, 0, 0). Then I2(P1, P2) = 1 mod 2 since the they intersect only at (0, 0, 0). On the other hand,
let C1, C2 be two curves in S2. Let f : C1 → S2 be the inclusion map. Since C1 compact, C2 closed and
dimC1 + dimC2 = 1 + 1 = 2, by Exercise 9, we have that I2(C1, C2) = 0 mod 2. As a result, S2 and the torus
are not diffeomorphic.
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