Additional sheets available (write your name on any additional sheets!!)

Name: _

- 1. Briefly define the following terms.
 - (a) $f: X \to Y$ is transversal to $Z \subset Y$.

(b) A homotopy between smooth maps $f, g: X \to Y$.

(c) A property P of smooth map $X \to Y$ is stable (or alternatively describe the meaning of stability in the following example: the property of a smooth map $f: X \to Y$ being proper is stable for X compact).

(d) An *n*-dimensional manifold with boundary (any of our definitions will do).

2. (a) Let $\rho \in \mathbb{R} \setminus 0$ be a nonzero real number (a "slope"). Define a map $f_{\rho} : \mathbb{R} \to S^1 \times S^1$ by

$$f_{\rho}(t) := (\alpha(t), \alpha(\rho \cdot t))$$

for $\alpha : \mathbb{R} \to S^1$ the standard winding map, $t \mapsto (\cos(t), \sin(t))$. Show that f_{ρ} is transversal to the circle $Z := S^1 \times \{\theta = 0\}$ (i.e. $Z = \{(x, y, 0, 1) \mid (x, y) \in S^1\}$.

(b) Let $Z' \subset S^1 \times S^1$ be the manifold of pairs of angles (θ, θ') satisfying $2\theta \equiv 3\theta' \mod 2\pi$. Show that this is a manifold (hint: consider the map $\tau : (\theta, \theta') \mapsto 2\theta - 3\theta' \mod 2\pi$ from $S^1 \times S^1 \to S^1$. You may assume the map defined in this way is smooth: this can be seen for example by re-writing τ as $(z_1, z_2) \mapsto z_1^2 \cdot z_2^{-3}$ where $z_1, z_2 \in S^1$ are viewed as unit complex numbers.)

(c) Show that Z and Z' as above are transversal manifolds (hint: there are separate solutions based on either (a) or (b) — be careful in each case to check the relevant transversality/regularity statement).

3. The main theorem of mod 2 intersection theory (which we have not proven yet) states that if $f, f': X \to Y$ are smooth maps of manifolds without boundary with X compact and f, f' are both transversal to $Z \subset Y$ (for $Z \subset Y$ a submanifold without boundary), and $\dim(X) + \dim(Z) = \dim(Y)$, then the number of preimage points $f^{-1}(Z)$ is finite and has the same parity as $(f')^{-1}(Z)$.

Show that this theorem is not true if Z is assumed to be a manifold with boundary (but X, Y do not have boundary). Use the inclusion of S^1 in \mathbb{R}^2 for the map $f: X \to Y$ to construct your counterexample.

- 4. Quick proofs
 - (a) Let $X \subset \mathbb{R}^3$ be a one-dimensional manifold. Prove that there exists a point $p \in \mathbb{R}^3$ such that the unit sphere around p intersects X in finitely many points.

(b) Show directly (without using any results from the book or from class) that if $U \subset Y$ is open and X = pt is a single point then the property of a map $f: X \to Y$ to have image in U is stable.

- 5. True/false (and a one-sentence explanation).
 - (a) The intersection of two transversal manifolds is a manifold.

(b) There is a smooth map $f : \mathbb{R}^2 \to \mathbb{R}^3$ which is "almost surjective", i.e. such that the complement $\mathbb{R}^3 \setminus f(\mathbb{R}^2)$ has measure 0.

(c) There is a smooth map $f : \mathbb{R} \to \mathbb{R}^3$ which is transversal to the line $\{1, 1, x \mid x \in \mathbb{R}\} \subset \mathbb{R}^3$.

(d) If $f: X \to Y$ is a submersion then f is transversal to Z for any manifold $Z \subset Y$.

(e) A measure zero subset of S^1 consists of finitely many points.