Math 141 Midterm 2 November 24, 2019
Additional sheets available (write your hame on any additional sheets!!)
Name: i < \/ A AN G (:::

1. Briefly define the following terms.
(a) [ Xe= s transversal to Z C Y.
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(c) A property P of smooth map X — Y is stable (or alternatively describe the meanin of stability
in the following example: the property of a smooth map f : X — Y being proper is stable for X

compact). _ _
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(d) An n-dimensional manifold with boundary (any of our a-Z iitions will do).
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2. (a) Let p € R\ 0 be a nonzero real number (a “slope”). Define a map f, : R — S1 x S! by .
fo(t) = (a(t),alp - 1))

for o : R — S! the standard winding map, t — (cos(t),sin(t)). Show that f, is transversal to the
circle Z 1= 51 % {0 =0} (le. Z = {(z,9,0,1) | (z,9) € S"}.
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_ (b) Let Z' ¢ S! x S! be the manifold of pairs of angles (6,9’) satisfying 20 = 30’ mod 27. Show that
this is a manifold (hint: consider the map 7 : (6,60") — 26 — 3¢’ mod 27 from St %8 S You

5 (21,22) — 22 - 25° where 21,2, € S! are viewed as unit complex numbers. )
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(c) Show that Z and Z’ as above are transversal manitolds (hint: there are separate solutions based on
either (a) or (b) — be careful in each case to check the relevant transversality /regularity statement).
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3. The main theorem of mod 2 intersection theory (which we have not proven yet) states that iff,f/: X—>
Y are smooth maps of manifolds without boundary with X compact and f, f' are both transversal to
c o Q-ozcy (for Z C Y a submanifold without boundary), and dim(X) +dim(Z) = dim(Y"), then the number
of preimage points f~!(Z) is finite and has the same parity as (f" e

Show that this theorem is not true if Z is assumed to be a manifold with boundary (but X ,..Y do nct have
boundary). Use the inclusion of S1 in R? for the map f : X —+ Y to construct your couriierexample.
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4. Quick proofs ((oce 59\ 1 e
(a) Let X C R® be a'éne—dimensional manifold. Prove that ciwre exists a point p € R3 such that the
unit sphere around p intersects X in finitely many points.

el - Ulgmy fScSiliER
W clui S o G‘P U it Sphe—

p@%f‘ﬂ\ \[\p : Sl—’ o - -#
B T tpe |

\

“"‘In.

Eg i <L ben borsrersality | 3 pe =

L b X e e s
A im CQMfatif‘ MAAA-FL‘::V S : '. —) %mi—ﬁ 3—"+
but & %LC i (% 7}*&(52*‘?3 G K o DRt e len ¥Sphea Kong

from the book or from class) that if U C Y is open and
famap f: X — Y to have image In U is stable.

(b) Show directly (without using any results
X = pt is a single point then the property o
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9. True/false (and a one-sentence explanation). Rl
(a) The intersection of two transversal manifolds is a manifold. T e R R

(R : /\P("ar F (e mane —f'&awﬂ
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ria(b) Tlﬁlere is 2& smooth map f : R? — R3 which is “almost surjective”, i.e. such that the complement
K* \ f(R?) has measure 0.
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(c) There is a smooth map f : R — R3 which is transversal to the line {1,1,z | z € R} C R3.
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(d) If f: X — Y is a submersion then f is transversal to Z for any manifold Z c Y.
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