Additional sheets available (write your name on any additional sheets!!)

Name: Dmity Vaintob

- 1. Briefly define the following terms.
 - (a) $f: X \to Y$ is transversal to $Z \subset Y$.

(b) A homotopy between smooth maps $f, g: X \to Y$.

$$H: X \times J \rightarrow Y$$
 such text $H(P,0) = f(P)$, $H(P,0) = g(P) \vee P \in X$.

(c) A property P of smooth map $X \to Y$ is stable (or alternatively describe the meaning of stability in the following example: the property of a smooth map $f: X \to Y$ being proper is stable for X compact).

(d) An n-dimensional manifold with boundary (any of our and itions will do).

(a) Let $\rho \in \mathbb{R} \setminus 0$ be a nonzero real number (a "slope"). Define a map $f_{\rho} : \mathbb{R} \to S^1 \times S^1$ by

$$f_{\rho}(t) := (\alpha(t), \alpha(\rho \cdot t))$$

for $\alpha: \mathbb{R} \to S^1$ the standard winding map, $t \mapsto (\cos(t), \sin(t))$. Show that f_{ρ} is transversal to the circle $Z := S^1 \times \{\theta = 0\}$ (i.e. $Z = \{(x, y, 0, 1) \mid (x, y) \in S^1\}$.

Since ox: R-> s' is a surjective local Option1 differ, any point (als), als) Es'xs' has nod Np.8 s.t. (a, a): (S-E, S+E) x (t-E, t+E) -> N diffeo, Let toe fpi(Z). Let &=ofp(Lo)=(a(to),, d(p to)). In IRXA the lines (t, 9t) x stopped (t, pto) intersect The second state of the entire of this is a manifold (hint: consider the map $\tau:(\theta,\theta')\mapsto 2\theta-3\theta'\mod 2\pi$ from $S^1\times S^1\to S^1$. You may assume the map defined in this way is smooth: this can be seen for example by re-writing τ as $(z_1,z_2)\mapsto z_1^2\cdot z_2^{-3}$ where $z_1,z_2\in S^1$ are viewed as unit complex numbers.)

Enough to show submersion. I wo ve cons above are lin. in dep for Be as left vertical is a HE is commutative

D'horizontal arrows are loc. diffeo, vight restical must be a subm (c) Show that Z and Z' as above are transversal manifolds (hint: there are separate solutions based on either (a) or (b) — be careful in each case to check the relevant transversality/regularity statement).

option1) tols is an immersion (from part (a)) and Imf213 = Z'. So f213: 12 -> Z' is a maj of thin manifolds with nonzer o decivative => a local diffeo. So eache 8€2' has h6d with chart given by f2/3 => transversality from purt (a) implies Z nZ'. Cor: &fz, (t) C Tq Z' for te Pz/3 (8), y g ∈ Z nZ'. So TgZ'+TgZ = dfz, (t)+TqZ=Tqy6, Option 2 Enough to show I/Z has 0=0 as regular value in coords as above: RXX Z DIZ commutative 4 LHs submersion =) RHS submersion. 3. The main theorem of mod 2 intersection theory (which we have not proven yet) states that if $f, f': X \to Y$ are smooth maps of manifolds without boundary with X compact and f, f' are both transversal to $C \to Z \to Y$ (for $Z \to Y$ a submanifold without boundary), and $\dim(X) + \dim(Z) = \dim(Y)$, then the number of preimage points $f^{-1}(Z)$ is finite and has the same parity as $(f')^{-1}(Z)$.

Show that this theorem is not true if Z is assumed to be a manifold with boundary (but X, Y do not have boundary). Use the inclusion of S^1 in \mathbb{R}^2 for the map $f: X \to Y$ to construct your counterexample.

Let f=i: 5'-) [P (inclusion) $f = (1+t) \cdot i$ Z=[-1.5,5] x {0} (closed one-dim manifold with Boundary) $f'(Z) = \{(-1,0),(1,0)\}$ and $f_{z}^{-1}(z) = \{(2,0)\}$ - 2 pts. (Ift ps') is vertical and To Z horizontal 4. Quick proofs

(a) Let $X \subset \mathbb{R}^3$ be a one-dimensional manifold. Prove that there exists a point $p \in \mathbb{R}^3$ such that the unit sphere around p intersects X in finitely many points.

Let
$$f = i s^2 : S^2 \rightarrow \mathbb{R}^3$$

in classion of unit sphere.
Period $f_p : S^2 \rightarrow \mathbb{R}^2$ translated $g_1 \mapsto g_1 + p_2$

By translation transversality, I pER? fp!(x) is a 3-2-1. with fp hX. finite set. din compact manifold. but # {fp'(x)}= # (52+p) 1 X for 52+p the unit sphere around

(b) Show directly (without using any results from the book or from class) that if $U \subset Y$ is open and X = pt is a single point then the property of a map $f: X \to Y$ to have image in U is stable.

Let
$$X = \{p\}$$
.

A homotopy is a map

 $H: X \times I \longrightarrow Y$. Assume $H(p,0) \in U$.

Then as $H^{-1}(u)$ is open and contains

 $(p,0)!$ it must contain all points

at distance $(p,0) \in X \times I$
 $(some \ e) = Y$ all points of the form

 (p,e)

- 5. True/false (and a one-sentence explanation).
 - (a) The intersection of two transversal manifolds is a manifold.

(b) There is a smooth map $f: \mathbb{R}^2 \to \mathbb{R}^3$ which is "almost surjective", i.e. such that the complement $\mathbb{R}^3 \setminus f(\mathbb{R}^2)$ has measure 0.

Falce. By dimension left ciency, if
$$g \in Imf$$
 it is a critical value = $\int Imf$ has measure $\partial G = \int Imf$ it is a component cannot have meas. O (c) There is a smooth map $f: \mathbb{R} \to \mathbb{R}^3$ which is transversal to the line $\{1, 1, x \mid x \in \mathbb{R}\} \subset \mathbb{R}^3$.

T. Consider f(x) = (0,0,x) : vacuously $fansversal (as f'[{(,||x||x \in \mathbb{R}_3 = p)})$

(d) If $f: X \to Y$ is a submersion then f is transversal to Z for any manifold $Z \subset Y$.

True
$$d_p f(T_p X) = T_p y$$

so $d_p f(T_p X) + a_{ny} + thing = T_p y$

(e) A measure zero subset of S^1 consists of finitely many points.

F. Take any countable 146 set of 51, say
$$\frac{5}{3}(\cos 8\pi, \sin 8\pi)$$
]

Constable union of measure 0 is measure 0.