
Math 141 Midterm 2 and Final exam practice

problems

Transversality, Sard’s theorem, stability and

homotopy, manifolds with boundary.

Note that the difficulty of these problems is not representative of
the difficulty of the exam: some of these are quite tricky. As before,
exam problems will be on the level of simplified homework problems.

1. (a) Let E := W+~v ⊂ Rn be a translation of a k-dimensional subspace
W ⊂ Rn by a vector v which is orthogonal to W . Show that E is
transversal to the sphere Sn if and only if |v| 6= 1.

Sn is the preimage of the regular value 1 ∈ R under the function G : Rn+1 →
R with G(x1, . . . , xn+1) :=

∑
xni .

So by a result from the book/from class, Sn intersects a submanifold Z ⊂
Rn+1 transversally if and only if 1 is a regular value for the function g := G |
Z : Z → R. Let Z = ~v + W. Then the restriction g := G | Z has differential
dpg = dpG |TpW , for p ∈ Z. Now Tp~v+W = W (for all points p) and dpG = 2pT ,
where p is viewed as a vectical vector. So dpg = 2pT | W. This linear map
to a one-dimensional space is surjective if and only if it has a nonzero value,
equivalently if and only if W contains a vector which is not orthogonal to p.

Now we have three cases. First, if |~v| > 1, then |~v + ~w| =
√
|~v|2 + |~w|2 > 1,

and so Sn ∩ Z = ∅, implying transversality vacuously. Second, if |~v| = 1, then
~v ∈ Sn∩Z, and dpg = 2~vT |W, which is zero as ~v is (by assumption) orthogonal
to W . Finally, assume |~v| < 1. Let p ∈ S1 ∩ Z. Then as p ∈ Z we have
p = ~v + ~w for a vector ~w ∈ W . As p ∈ S1, we must have |~w| =

√
1− |~v|2 > 0.

In particular, |~w| 6= 0 and so viewing ~w ∈W as a tangent vector in TpZ(= W ),
we have dg(~w) = pT (~w) = (~v + ~w) · ~w = 0 + ~w · ~w > 0, so dpg is surjective for
each p ∈ Z ∩ Sn, and Z and Sn are transversal.

(b) For what pairs of fixed values a, b is it true that the plane
{(x, y, z, t) | x = a, y = b} transversal to the sphere S2 × {0} in R4?

We could use the previous method, with S2 × {0} cut out by the function
G : R4 → R2 given by (x, y, z, t) 7→ (x2 + y2 + z2, t). Instead, I’ll use a more
direct method.

Let Z = {(x, y, z, t) | x = a, y = b}. Then TpZ = 〈~z,~t〉 is the span of z, t.
On the other hand, let p ∈ S2 × {0}. Then p = (x, y, z, 0), with (x, y, z) ∈ S2.
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The tangent space Tp(S
2 × {0}) is T(x,y,z)S

2 × {0}, and T(x,y,z)S
2 is the two-

dimensional space (x, y, z)⊥, i.e. the subspace {(x′, y′, z′, 0)T ∈ R4 | xx′ + yy′ +
zz′ = 0. Note that Tp(S

2×{0}) ⊂ R3×{0} and 〈~z,~t〉 span all of R4 if and only
if the two-dimensional space TpS

2 = (x, y, z)⊥ ⊂ R3 together with ~z span all of
R3. This is true if and only if ~z is not in (x, y, z)⊥, i.e. (x, y, z) 6= (x, y, 0). So
Z t S2 × {0} if and only if Z ∩ S2 × {0}, does not contain vectors of the form
(a, b, 0, t), i.e. if and only if a2 + b2 6= 1.

2. (a) Assume that B ⊂ X is a pair of (boundaryless) manifolds, with
X of dimension n and B of dimension n− 1. Prove that for any b ∈ B,
there is a pair V, V ′ of manifolds with boundary such that the union
V ∪V ′ is an open neighborhood of b in X, but V, V ′ only intersect along
B.

By the local embedding theorem, near each p ∈ B ⊂ X, there exists a pair of
charts ψX : UX → NX , ψB : UB → NB , diffeomorphisms from opens UX ⊂ Rn
and UB ⊂ Rn−1 in Euclidean space to neighborhoods of p, such that NB =
NX ∩ B,1 and we have p = ψX(0) = ψB(0), and (for iB the inclusion B ⊂ X)
we have ψ−1X iBψB = inn−1 for Inn−1 the standard embedding from Rn−1 to Rn.
Set V := ψX(H+ ∩ U) and V ′ := ψX(H− ∩ U) (for H+ = {(x1, . . . , xn) | xn >
0}, H− = {(x1, . . . , xn) | xn < 0} the half-spaces. Then V, V ′ are diffeomorphic
to open subsets of H±, therefore n-dimensional manifolds with boundary, and
V ∩ V ′ = ψX(H+ ∩H−), satisfying the requirments of the problem.

(b) Assume X = S2 and B = S1 × {0} (the equator). Show that
there is (globally) a pair V, V ′ of manifolds with boundary such that
V ∪ V ′ = X and V ∩ V ′ = B.

Take V = S2
z≥0, V

′ = S2
z≤0, the top and bottom hemispheres.

(c) Is this true for any submanifold B of codimension one in a
manifold X? Hint: the open Möbius strip is a manifold (without
boundary).

No. Consider the circle S1 inside the open Möbius strip, M . Assume that
there exist V, V ′ as above. Then as V ∩ V ′ = S1, note that S1 must be in the
boundary of both V and V ′ (if there is some point p ∈ V ′ ∩ V̊ then as V is
two-dimensional, its interior V̊ is open in M , and so V ′∩ V̊ contains a nonempty
open in V ′, which for dimension reasons cannot be contained in S1).

So the interiors V̊ , V̊ ′ are disjoint (have intersection ∅) and the unions of
the interiors V ∪ V ′ must be M \ S1. Since M \ S1 is connected, the only way
this can happen is if one of V̊ , V̊ ′ is empty. But any nonempty manifold with
boundary has nonempty interior, so V ′ = ∅, contradicting V ∩ V ′ = S1.

3. (a) We classified connected and compact one-dimensional mani-
folds with boundary up to diffeomorphism. Can you classify all con-
nected manifolds with boundary in R1? (Not up to diffeomorphism.)
Which ones are compact?

1if NB ⊂ NX but is not all of NX ∩ B, just throw away from NX all points which are in
B but not in NB : this is a closed set.
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Let X ⊂ R be a connected manifold with boundary. Then X̊ is a connected
manifold inside R of dimension 1, therefore an open connected subset of R.
All open connected subsets in R are of the form U = (a, b), U = (a,∞), U =
(−∞, b), U = (−∞,∞) for some a < b ∈ R. Note that for any manifold with

boundary X we have (in the topology of X), the topological closure
(
X̊
)

= X

(see this locally: it is true for the half-space H). Now let Y := X̊R be the
topological closure of the manifold X̊ in R. Then Y is closed in the ambient
space, so X ∩ Y is closed in X and contains X̊, therefore X ∩ Y = X, and
so X ⊂ Y. This means that for some connected open U ⊂ R (as above), we
must have U ⊂ X ⊂ Ū . Any choice of such a set is evidently a manifold with
boundary. The choices are as follows:

1. For X̊ = (a, b) we can add zero, one or both boundary points, resulting in
options (a, b), [a, b), (a, b] and [a, b].

2. For X̊ = (a,∞) or (−∞, b) we can add zero or one boundary points
resulting in options (a,∞), [a,∞), (−∞, b), (−∞, b].

3. For X̊ = (−∞,∞), there are no boundary points we could add, so X must
be (−∞,∞) (empty boundary).

(b) Same question, in S1.
Let X ⊂ S1 be such a manifold. We have two options. Either X = S1, or

there is some point p0 ∈ S1 \ X. In the latter case, we have X ⊂ S1 \ p. Now
S1 \ p0 is diffeomorphic to the open interval (θ, θ+ 2π) under the winding map
α : R→ S1, for some a ∈ R. Therefore manifolds with boundary in S1 are either
S1 or α(X) for X a manifold with boundary in R contained in some (θ, θ+ 2π).
In other words we have the following possibilities: S1 (no boundary) or α((a, b))
for b− a ≤ 2π, or α((a, b]), α([a, b)), α([a, b]) for b− a < 2π.

4. Construct a homotopy from the inclusion i : S1 → D2 of the circle
in the two-disk to the map z : S1 → D2 sending each point to (0, 0).

Define it(p) = p ·(1− t) for p ∈ S1. Note that for t ∈ [0, 1] we have it(p) ∈ D,
so we can define a map h : S1×I → D by h(x, t) := it(p). This map is evidently
smooth, and it is a homotopy between i0 = i and i1 = z.

5. (a) Show that the property of a smooth function I → R to have
everywhere negative derivative is stable2.

Assume ft : I → R is a smoothly varying homotopy of such functions, with
f0 having everywhere negative derivative. Since I is compact, the property of
such a function being an immersion, equivalently local isomorphism is stable
(from the book), so for some ε > 0, all ft for t < ε are immersions. Therefore
for these t, we have f ′t(x) 6= 0 for any x ∈ I. As f ′0(x) < 0, by the intermediate
value theorem we must have f ′t(x) < 0 for all x ∈ I and t < ε.

2original question was for map R→ R, which is false
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(b) Show that this property is not homotopy invariant. Consider the
homotopy h(x, t) = ft(x) for ft(x) = (t− 1/2) · x. Then at f0(x) is the function
x 7→ −x/2 which has negative derivative but f1(x) = x/2 certainly does not.

(c) If X is a compact manifold with boundary, the property of a
smooth map f : X → Y being a diffeomorphism3 onto its image (i.e., an
embedding) is stable (you do not need to prove this). Show that this
is not necessarily true if the maps are only required to be continuous.
Hint: take X = [0, 1], Y = R and f = i the standard embedding. Can
you deform it such a way that it is no longer diffeomorphic to its
image?

Consider the continuous map i : I → R given by x 7→ x. This map is a
diffeomorphism of I to [0, 1] ⊂ R. Now let ft := |x−t| for t ∈ I. Then f0 = i but
for any ε > 0, the function fε is not injective (for example fε(−ε/2) = fε(ε/2).)

6. (a) Give an example of a function f : X → Y whose critical points
do not have measure zero (and explain why this is the case).

Consider the zero map z : R → R, with t 7→ 0. Then every point of R is
critical (but 0 is the only critical value). Alternatively, consider the inclusion
i : S1 → R2. Then every point of S1 is critical (by dimension reasons, i cannot
be a submersion), but any q ∈ R2 \ S1 is a regular value, vacuously.

(b) Suppose that f : X → R is a smooth and proper map from a
one-dimensional manifold with boundary4. Assume that f has finitely
many critical values. Show that the number of preimage points of a
regular value is bounded by a finite number.

Note that this is a difficult problem, and not representative of examp prob-
lems. Let C ⊂ R be the finite set of critical values. Arranging them in order,
write C = {c1, c2, . . . , ck} with c1 < c2 < · · · < ck. Let I0 = (−∞, c1), and let
I1 = (c1, c2), I2 = (c2, c3), . . . , Ik−1 = (ck−1, ck) and Ik = (ck,∞). Let a < b be
a pair of points in a given interval I`. Then all points of the closed interval [a, b]
are regular points of f, so f−1([a, b]) is a one-dimensional manifold with bound-
ary. It is compact, since f is proper and [a, b] is compact. So f−1([a, b]) is a
finite union of closed intervals and circles. A circle cannot map to (a, b) without
critical points (the maximum and minimum are critical), so f−1([a, b]) is a union
of closed intervals. The boundary ∂f−1([a, b]) = f−1(∂[a, b]) = f−1(a)tf−1(b).

A submersion from a closed interval to [a, b] must be monotone, therefore
the two boundary points of each connected component of f−1([a, b]) map to
two different boudnary points. Therefore, f−1(a) and f−1(b) are finite sets of
the same finite cardinality (equal to the number of intervals in f−1[a, b]).) Let
n` be the number of boundary points of some point t in the interval I`, (this
is finite as points t ∈ I` are regular and f is proper). Then any other point
t′ ∈ I` also has n` preimage points, and as the union I0 ∪ I1 ∪ · · · ∪ In ⊂ R is
the complement to the set of critical values, the maximum number of critical
points is sup(n0, n1, . . . , nk), a finite number.

3original problem had a typo and said “diffeomorphism”
4originally, the words “proper” and “with boundary” were not mentioned
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7. Which of the following are manifolds with boundary? Give a
picture or a very brief explanation.

(a) The ray, [0,∞)? Yes: it is a one-dimensional half-space.
(b) The rectangle X = [0, a]× [0, b]? No. This is a rectangle. Its interior

points have an open neighborhood diffeomorphic to R2 but its exterior points
do not (as they have a tangent direction that cannot be extended to the image
of an interval). But its exterior (the boundary of a rectangle) is not a smooth
manifold, which would be the case if X were a manifold with boundary.

(c) The cross, {(x, y) | xy = 0} ⊂ R2? No. The midpoint p = (0, 0)
has no neighborhood diffeomorphic to either an open or a closed interval (for
example, if you remove p from any neighborhood you get at least four connected
components).

(d) The area under a graph, {(x, y) | x ≤ f(y)} ⊂ R2, for f a smooth
function? Yes. The map (x, y) 7→ (x, y − f(x)) provides a chart to the lower
half-plane.

(e) The set X = {(x, y, z) | x2 + y2 ≤ z2 in R3? No. This is a filled-in
union of two opposite cones, and its boundary is the union of two empty cones.
The cone point is a singularity of the boundary. Here’s a more careful proof:
Assume there was a chart ψ from H3 to a neighborhood of p = (0, 0, 0), taking
0 ∈ H3 to p. Let A = d0ψ (an injective, therefore invertible matrix). Let
~v = A−1(0, 0, 1). Then either ~v ∈ H or −~v ∈ H. Define the map γ : I → X
defined by

γ(t) := ψ(±t~v)

(sign chosen so that ±~v ∈ H). This map has differential γ′(0) = (±1, 0, 0),. But
this means that for sufficiently small ε, we have gamma(ε) = (ε, 0, 0) + O(ε2),
and so for (x, y, z) = γ(ε) we have x2 = ε2 + O(ε3) is certainly larger than
z2 = O(ε4), so γ(ε) is not in X, contradiction.

8. True/false.
(a) If X is compact, a function f : X → R has finitely many critical

values. False. We only know that the set of critical values has measure zero.
(For an example, consider the function f(x) := sin(1/x) · e−1/x2

extended by
f(0) = 0 from [0, 1] to R).

(b) There is a one-dimensional manifold Y and a map f : D2 → Y
with S1 ⊂ D2 mapping injectively. False. If S1 maps injectively, then ∂f
is non-constant, so there are points where the differential of ∂f is nonzero, thus
invertible, hence (by local diffeomorphism theorem), the image of δf contains
an open neighborhood V of Y. This means f(S1) ⊂ Y contains a regular point
(regular points are dense by Sard), say q = f(p) ∈ Y , for p ∈ S. The preimage
of q is a one-dimensional submanifold with boundary Q ⊂ D2, compact as D2 is
compact. Its boundary is ∂Q = Q∩S1 = {p}, as ∂f is injective. But a compact
one-dimensional manifold has even number of boundary points, contradiction.

(c) The union of measure zero sets is measure zero. True, from
class/book.
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(d) The product of a manifold with boundary and a manifold with-
out boundary is a manifold with boundary. True, from class/book (or see
this by looking locally and using that Hm × Rn ∼= Hm+n).

(e) S2 is a manifold with boundary. True. The boundary happens to
be empty.
9. Let X ⊂ R2 be a one-dimensional manifold. Show that there exists
a number t such that the set of points (x, y) ∈ X with x − y = t is
discrete.

Let f : R → R2 be given by f(r) = (r, r). By the translation transversality
theorem, there is a vector v = (a, b) ∈ R2 with the function fv : r 7→ (r+a, r+b)
transversal to X. By the preimage theorem, for these a, b the set of points
{r ∈ R | (r + a, r + b)} ∈ X is a zero-dimensional manifold, equivalently, a
discrete set of points. We conclude by setting t = a− b.

Note. An alternative proof is to define the function F : R2 → R with
F (x, y) = x− y, set f = F |X , and set t to be a regular value of f .
10. Show that if A,B ⊂ X are subsets (not necessarily closed) such
that A has measure 0 and B does not have measure zero then the
complement of B \ (B ∩ A) of A in B does not have measure zero
(note: do not try to work with the measure of B: rather, use proof
by contradiction).

Set A′ = B ∩ A. Since A′ ⊂ A, it has measure zero. Assume B \ A′ has
measure zero. Then B = A′ ∪ (B \A′) is the union of two sets of measure zero,
hence has measure zero. Contradiction.
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