
Math 141 Midterm 1 and Final exam practice

Topology, immersions, submersions, Lie groups.

1. Suppose f : Rm → Rn is continuous. Show that its graph Γ(f) ⊂
Rm+n, defined by Γ(f) := {(x, y) | f(x) = y} ⊂ Rm × Rn is closed.
Let F : Rm × Rn → Rn be the function defined as F (x, y) := y − f(x). Then
since f is continuous, F is also continuous, and therefore the preimage of a
closed set under F is closed. We are done by observing Γ = F−1({~0}).

2. Show that R is not homeomorphic to R2.
Short proof. Assume for the sake of contradiction that a homeomorphism f :
R→ R2. Let R∗ := R\0, and U := R2\f(0). Let f∗ : R∗ → U be the restriction
of f . Since f induces a bijection on opens OR → OR2 , it must do the same after
restricting to the complement of a point, so f∗ : OR∗ → OU is a bijection, and
f∗ is a homeomorphism. R∗ is disconnected but R2 without a point is easily
seen to be path-connected (and therefore connected). Contradiction.

Long proof. Same, but check more carefully that f∗ is a homeomorphism and
that V is path-connected:
Checking that f∗ is a homeomorphism. First prove a basic topology lemma:

Lemma 1. Suppose f : X → Y is a continuous function and A ⊂ X and B ⊂ Y
are subsets such that f(A) ⊂ B. Then the restricted function fres : A → B is
continuous for the subset topologies of A, B.

Proof. Suppose V ⊂ B is open. Then there exists U ⊂ Y with V = U ∩B. Now
f−1res(B) = f−1(U) ∩A, open for the subset topology A by continuity of f .

Now apply the lemma to A = R∗, B = R2 \f(0) to see that f∗ is continuous,
and with A,B flipped to see (f∗)−1 is continuous.

Checking that R2 \ f(0) is path-connected. Let P0 = f(0) ∈ R2. Suppose
P1, P2 ∈ R2 \ P are two distinct points in the complement to P0. Consider
two (of the infinitely many) distinct circular arcs γ, γ′ connecting P1 to P2 in
R2. Then γ, γ′ do not intersect (except at the endpoints), and so at most one
of γ, γ′ may contain P0. The other one then provides a path from P1 to P2 in
R2 \ P0.
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Note that both of these proofs get you full points: you are safe to assume
basic facts from topology and anything we discussed/read about differential
topology unless stated otherwise.

3. Compute the tangent space of the ellipsoid x2 + y2 + 2z2 = 1 at the
point P = (0, 0,

√
2/2).

First proof. Let X ⊂ R3 be the ellipsoid as above and P = (0, 0,
√

2/2).
Consider the map f : X → R2 defined by f : (x, y, z) 7→ (x, y): note it is smooth,
as it is the restriction of the standard projectio function πx,y : R3 → R2. Let
us define a local inverse to f near P , given by ψ : U → X be the map (x, y) 7→
(x, y,

√
1−(x2+y2)

2 ), on U = {(x, y) | x2 + y2 < 1 (strict inequality implies U is

the continuous preimage of an open ray under the function x2+y2, hence open).
Since we are considering the square root of a positive smooth function, the third
coordinate of g, hence g itself, is smooth on U . Let NP be defined as ψ(U).
Then NP is the intersection of X with the open {(x, y, z) | z ≥ 0} ⊂ R3, hence
open, and ψ : U → NP is smooth as we have seen. The function φ = f |NP

is smooth as it is the restriction of a smooth function. Evidently, φ : U → NP
and ψ : NP → U are inverse functions, hence ψ is a chart. We compute
∂xψ(0, 0) = (1, 0, 0) and ∂yψ = (0, 1, 0), so the tangent space is 〈x̂, ŷ〉 ⊂ R3.

Alternative proof. Let X ⊂ R3 be the ellipsoid above and P = (0, 0,
√

2/2).
Consider the function F : R3 → R given by

F : (x, y, z) 7→ x2 + y2 + 2z2.

Then X = F−1(1). We compute the differential (equivalently, Jacobian) of F
at P , obtaining the 1 × 3 matrix dP (F ) = (0, 0,

√
2). The corresponding linear

transformation R3 → R is nonzero hence surjective, so F is a submersion at P
and by the local submersion theorem we can compute the tangent to F−1(1) by
taking the kernel,

Ker (dP (F )) = {

xy
0

 | x, y ∈ R}.

4. (a) Let X ⊂ RN be a manifold of dimension n ≥ 1 and P ∈ X a point.
Show that there is a coordinate 1 ≤ i ≤ N such that the ith coordinate
map πi : X → R defined by πi(x1, . . . , xN ) := xi is a submersion at P .
TP (X) is an n-dimensional linear subspace in RN . Since n ≥ 1 there is a nonzero
tangent vector v = (x1, . . . , xN )T , with xi 6= 0. Now as the projection function
πi : (x1, . . . , xn) 7→ xi is linear, we have dQπi = πi for all Q ∈ RN , and so
dπi(v) = πi(v) = xi 6= 0.
(b) Show more generally that it is possible to choose n different coor-
dinate maps which are independent at P , i.e. such that the resulting
map X → Rn is a local diffeomorphism at P .
Similar to the above. Let {v1, . . . , vn} be a basis for TPX, with each vi ∈ RN .
Let M = (v1| . . . |vn) be this basis written as a matrix. This matrix has rank n,
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so it has a nonvanishing n×n minor. Let (i1, . . . , in) be the indices of the rows
of this minor. Then the projection function π : (x1, . . . , xN ) 7→ (xi1 , dots, xin)
is linear, thus dPπ = π, and therefore dPπ : TPX → Rn is a bijection.

Alternative proof sketch: find the first πi1 using (a). Set πi1(P ) = x, then
use the preimage theorem to show that X ′ := π−1i1 (x)∩NP is a submanifold (for
some neighborhood NP ), and then inductively apply (a) to X ′ to get coordinates
i2, . . . , in.
(c) Deduce that for any X ∈ R3 a two-dimensional surface and any
P ∈ X, there is a chart ψ : U → X for a neighborhood of P with U ⊂ R2

and such that either ψ(x, y) = (x, y, f(x, y)) or ψ(x, y) = (x, f(x, y), y) or
ψ(x, y) = (f(x, y), x, y) for some function f : R2 → R.

By part (b), there is a coordinate projection πij : R3 → R2 which is a local
differomorphism on X near P. There are three options for πij (depending on
which coordinate gets projected along), namely π12, π23, π13.
Case I: assume π12 is a local diffeomorphism. Then locally π12 : X → R2

has an inverse, i.e. there is a neighborhood NP in X of P such that π12 :
NP → π12(NP ) is a diffeomorphism. Since π12 is a local diffeomorphism on
NP (in particular, a submersion), we know that the image of an open is open,

so π12(NP ) is open. Call it U . Then ψ :=
(
π12 |NP

)−1
: U → NP is the

inverse diffeomorphism. Now if ψ(x, y) =
(
ψ1(x, y), ψ2(x, y), ψ3(x, y)

)
then us-

ing π12ψ(x, y) = (x, y) we deduce that ψ1(x) = x and ψ2(y) = y. Setting
f(x, y) = ψ3(x, y) we are done in this case.
Other cases: if π23 is a diffeomorphism then by a similar argument we con-
struct ψ : U → NP with ψ(x, y) = (x, f(x, y), y) and if π13 is a diffeomor-
phism then by a similar argument we construct ψ : U → NP with ψ(x, y) =(
f(x, y), x, y

)
.

5. Show that the map α : R→ R2 given by t 7→ (cos(t), sin(t)) is an immersion.
Take its differential: dtα = (− sin(t), cos(t))T , which has magnitude 1, hence

non-zero (and therefore the corresponding map R→ R2 is injective).

6. Let I = (0, 1) be the unit interval. Give an example of a map
from the disjoint union (0, 1) t (1, 2) to R2 which is an immersion and
injective but not an embedding.
Consider the “letter T” map,

x 7→

{
(x− 1/2, 0) x ∈ (0, 1)

(0, 1− x) x ∈ (1, 2)
.

Draw this map: its image looks like the capital letter T . The map is locally
linear near each point, so clearly an immersion. It is injective, as no point on the
second interval has image with y-coordinate zero. But it does not have smooth
inverse, as the sequence of points f(1 + 1/n) converges to f(1/2).

7. (a) Prove that the map sq : GLn → GLn given by M 7→M2 is a local
diffeomorphism at I (hint: compute its differential). To compute

3



the differential, let M ∈ Matn = TIGLn. Then dIsq(v) = limε→0
(I+εM)2−I

ε =

limε
2εM+ε2M2

ε = limε 2M + εM2 = 2M. Thus the differential is given by the
linear map M → 2M .

(b) Is this map a diffeomorphism? (Hint: look at the determi-
nant.) No: it is not surjective, since |M2| = |M |2 > 0, so sq(M) has positive

determinant and a matrix such as


−1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

 with negative determinant

cannot be in the image.
(c) Deduce that for any Lie group G, the map sq : G → G is a

local diffeomorphism. Since G is a Lie group, for any M ∈ G we have
M2 ∈ G as well, so the map sq can be restricted to G. By the chain rule, its
differential will then coincide with the restriction to TIG of dIsq. Thus it will
be the multiplication-by-two map on the linear space TIG. This is an invertible
(indeed, a scalar) matrix, therefore sqG is a local diffeomorphism.
8. True or false/short answer:

(a) Is the sphere S2 connected? Is it compact? Yes to both. Any
two points can be connected by a path along the equator, and it is closed and
bounded in R3, hence compact.

(b) If f : X → Y takes P to Q, there is a pair of parametrizations
ψP : U → X,ψQ : V → Y such that U ⊂ TP (X), V ⊂ TQ(Y ) are open
and the composed map U → V is given by dP f . This is true in the case
that f is either a submersion or an immersion (equivalently: maximal rank).
But not in general: for example the map sq : R → R given by x 7→ x2 has
differential 0 at x = 0, but cannot be expressed as the zero map for any smooth
parametrization of any neighborhood 0 ∈ R (as this would imply that there is
an open neighborhood of 0 of points that all square to zero, which is absurd).

(c) A map is a local diffeomorphism if and only if it is both an
immersion and a submersion True, since a linear map is invertible iff it is
injective and surjective.

(d) The preimage of a critical value of a function f : X → Y is
smooth. False: this is true (by the preimage theorem) for a regular value,
but not for a critical value. For example consider the preimage F−1(0) of the
function F : R2 → R given by F (x, y) = xy at the critical value 0 ∈ R.

(e) If a function f : X → Y is a submersion then every Q ∈ Y is a
regular value. True: a value Q ∈ Y is regular if and only if f is a submersion
locally for each P ∈ f−1(Q), and if f is a submersion then it is a submersion
locally near every P . (In fact, the converse is also true: if every Q ∈ Y is a
regular value then f is a submersion.)
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