Math 141 Midterm 1 and Final exam practice Topology, immersions, submersions, Lie groups.

1. Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous. Show that its graph $\Gamma(f) \subset$ \mathbb{R}^{m+n}, defined by $\Gamma(f):=\{(x, y) \mid f(x)=y\} \subset \mathbb{R}^{m} \times \mathbb{R}^{n}$ is closed.
Let $F: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the function defined as $F(x, y):=y-f(x)$. Then since f is continuous, F is also continuous, and therefore the preimage of a closed set under F is closed. We are done by observing $\Gamma=F^{-1}(\{\overrightarrow{0}\})$.

2. Show that \mathbb{R} is not homeomorphic to \mathbb{R}^{2}.

Short proof. Assume for the sake of contradiction that a homeomorphism f : $\mathbb{R} \rightarrow \mathbb{R}^{2}$. Let $\mathbb{R}^{*}:=\mathbb{R} \backslash 0$, and $U:=\mathbb{R}^{2} \backslash f(0)$. Let $f^{*}: \mathbb{R}^{*} \rightarrow U$ be the restriction of f. Since f induces a bijection on opens $\mathcal{O}_{\mathbb{R}} \rightarrow \mathcal{O}_{\mathbb{R}^{2}}$, it must do the same after restricting to the complement of a point, so $f^{*}: \mathcal{O}_{\mathbb{R}^{*}} \rightarrow \mathcal{O}_{U}$ is a bijection, and f^{*} is a homeomorphism. \mathbb{R}^{*} is disconnected but \mathbb{R}^{2} without a point is easily seen to be path-connected (and therefore connected). Contradiction.

Long proof. Same, but check more carefully that f^{*} is a homeomorphism and that V is path-connected:
Checking that f^{*} is a homeomorphism. First prove a basic topology lemma:
Lemma 1. Suppose $f: X \rightarrow Y$ is a continuous function and $A \subset X$ and $B \subset Y$ are subsets such that $f(A) \subset B$. Then the restricted function $f_{\text {res }}: A \rightarrow B$ is continuous for the subset topologies of A, B.

Proof. Suppose $V \subset B$ is open. Then there exists $U \subset Y$ with $V=U \cap B$. Now $f_{\text {res }}^{-1}(B)=f^{-1}(U) \cap A$, open for the subset topology A by continuity of f.

Now apply the lemma to $A=\mathbb{R}^{*}, B=\mathbb{R}^{2} \backslash f(0)$ to see that f^{*} is continuous, and with A, B flipped to see $\left(f^{*}\right)^{-1}$ is continuous.

Checking that $\mathbb{R}^{2} \backslash f(0)$ is path-connected. Let $P_{0}=f(0) \in \mathbb{R}^{2}$. Suppose $P_{1}, P_{2} \in \mathbb{R}^{2} \backslash P$ are two distinct points in the complement to P_{0}. Consider two (of the infinitely many) distinct circular arcs γ, γ^{\prime} connecting P_{1} to P_{2} in \mathbb{R}^{2}. Then γ, γ^{\prime} do not intersect (except at the endpoints), and so at most one of γ, γ^{\prime} may contain P_{0}. The other one then provides a path from P_{1} to P_{2} in $\mathbb{R}^{2} \backslash P_{0}$.

Note that both of these proofs get you full points: you are safe to assume basic facts from topology and anything we discussed/read about differential topology unless stated otherwise.
3. Compute the tangent space of the ellipsoid $x^{2}+y^{2}+2 z^{2}=1$ at the point $P=(0,0, \sqrt{2} / 2)$.
First proof. Let $X \subset \mathbb{R}^{3}$ be the ellipsoid as above and $P=(0,0, \sqrt{2} / 2)$. Consider the map $f: X \rightarrow \mathbb{R}^{2}$ defined by $f:(x, y, z) \mapsto(x, y):$ note it is smooth, as it is the restriction of the standard projectio function $\pi_{x, y}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. Let us define a local inverse to f near P, given by $\psi: U \rightarrow X$ be the map $(x, y) \mapsto$ $\left(x, y, \sqrt{\frac{1-\left(x^{2}+y^{2}\right)}{2}}\right)$, on $U=\left\{(x, y) \mid x^{2}+y^{2}<1\right.$ (strict inequality implies U is the continuous preimage of an open ray under the function $x^{2}+y^{2}$, hence open). Since we are considering the square root of a positive smooth function, the third coordinate of g, hence g itself, is smooth on U. Let N_{P} be defined as $\psi(U)$. Then N_{P} is the intersection of X with the open $\{(x, y, z) \mid z \geq 0\} \subset \mathbb{R}^{3}$, hence open, and $\psi: U \rightarrow N_{P}$ is smooth as we have seen. The function $\phi=\left.f\right|_{N_{P}}$ is smooth as it is the restriction of a smooth function. Evidently, $\phi: U \rightarrow N_{P}$ and $\psi: N_{P} \rightarrow U$ are inverse functions, hence ψ is a chart. We compute $\partial_{x} \psi(0,0)=(1,0,0)$ and $\partial_{y} \psi=(0,1,0)$, so the tangent space is $\langle\hat{x}, \hat{y}\rangle \subset \mathbb{R}^{3}$.

Alternative proof. Let $X \subset \mathbb{R}^{3}$ be the ellipsoid above and $P=(0,0, \sqrt{2} / 2)$. Consider the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
F:(x, y, z) \mapsto x^{2}+y^{2}+2 z^{2} .
$$

Then $X=F^{-1}(1)$. We compute the differential (equivalently, Jacobian) of F at P, obtaining the 1×3 matrix $d_{P}(F)=(0,0, \sqrt{2})$. The corresponding linear transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}$ is nonzero hence surjective, so F is a submersion at P and by the local submersion theorem we can compute the tangent to $F^{-1}(1)$ by taking the kernel,

$$
\operatorname{Ker}\left(d_{P}(F)\right)=\left\{\left.\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}\right\}
$$

4. (a) Let $X \subset \mathbb{R}^{N}$ be a manifold of dimension $n \geq 1$ and $P \in X$ a point. Show that there is a coordinate $1 \leq i \leq N$ such that the i th coordinate $\operatorname{map} \pi_{i}: X \rightarrow \mathbb{R}$ defined by $\pi_{i}\left(x_{1}, \ldots, x_{N}\right):=x_{i}$ is a submersion at P. $T_{P}(X)$ is an n-dimensional linear subspace in \mathbb{R}^{N}. Since $n \geq 1$ there is a nonzero tangent vector $v=\left(x_{1}, \ldots, x_{N}\right)^{T}$, with $x_{i} \neq 0$. Now as the projection function $\pi_{i}:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{i}$ is linear, we have $d_{Q} \pi_{i}=\pi_{i}$ for all $Q \in \mathbb{R}^{N}$, and so $d \pi_{i}(v)=\pi_{i}(v)=x_{i} \neq 0$.
(b) Show more generally that it is possible to choose n different coordinate maps which are independent at P, i.e. such that the resulting $\operatorname{map} X \rightarrow \mathbb{R}^{n}$ is a local diffeomorphism at P.
Similar to the above. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for $T_{P} X$, with each $v_{i} \in \mathbb{R}^{N}$. Let $M=\left(v_{1}|\ldots| v_{n}\right)$ be this basis written as a matrix. This matrix has rank n,
so it has a nonvanishing $n \times n$ minor. Let $\left(i_{1}, \ldots, i_{n}\right)$ be the indices of the rows of this minor. Then the projection function $\pi:\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(x_{i_{1}}\right.$, dots, $\left.x_{i_{n}}\right)$ is linear, thus $d_{P} \pi=\pi$, and therefore $d_{P} \pi: T_{P} X \rightarrow \mathbb{R}^{n}$ is a bijection.

Alternative proof sketch: find the first $\pi_{i_{1}}$ using (a). Set $\pi_{i_{1}}(P)=x$, then use the preimage theorem to show that $X^{\prime}:=\pi_{i_{1}}^{-1}(x) \cap N_{P}$ is a submanifold (for some neighborhood N_{P}), and then inductively apply (a) to X^{\prime} to get coordinates i_{2}, \ldots, i_{n}.
(c) Deduce that for any $X \in \mathbb{R}^{3}$ a two-dimensional surface and any $P \in X$, there is a chart $\psi: U \rightarrow X$ for a neighborhood of P with $U \subset \mathbb{R}^{2}$
and such that either $\psi(x, y)=(x, y, f(x, y))$ or $\psi(x, y)=(x, f(x, y), y)$ or $\psi(x, y)=(f(x, y), x, y)$ for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

By part (b), there is a coordinate projection $\pi_{i j}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ which is a local differomorphism on X near P. There are three options for $\pi_{i j}$ (depending on which coordinate gets projected along), namely $\pi_{12}, \pi_{23}, \pi_{13}$.
Case I: assume π_{12} is a local diffeomorphism. Then locally $\pi_{12}: X \rightarrow \mathbb{R}^{2}$ has an inverse, i.e. there is a neighborhood N_{P} in X of P such that π_{12} : $N_{P} \rightarrow \pi_{12}\left(N_{P}\right)$ is a diffeomorphism. Since π_{12} is a local diffeomorphism on N_{P} (in particular, a submersion), we know that the image of an open is open, so $\pi_{12}\left(N_{P}\right)$ is open. Call it U. Then $\psi:=\left(\left.\pi_{12}\right|_{N_{P}}\right)^{-1}: U \rightarrow N_{P}$ is the inverse diffeomorphism. Now if $\psi(x, y)=\left(\psi_{1}(x, y), \psi_{2}(x, y), \psi_{3}(x, y)\right)$ then using $\pi_{12} \psi(x, y)=(x, y)$ we deduce that $\psi_{1}(x)=x$ and $\psi_{2}(y)=y$. Setting $f(x, y)=\psi_{3}(x, y)$ we are done in this case.
Other cases: if π_{23} is a diffeomorphism then by a similar argument we construct $\psi: U \rightarrow N_{P}$ with $\psi(x, y)=(x, f(x, y), y)$ and if π_{13} is a diffeomorphism then by a similar argument we construct $\psi: U \rightarrow N_{P}$ with $\psi(x, y)=$ $(f(x, y), x, y)$.
5. Show that the map $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $t \mapsto(\cos (t), \sin (t))$ is an immersion. Take its differential: $d_{t} \alpha=(-\sin (t), \cos (t))^{T}$, which has magnitude 1 , hence non-zero (and therefore the corresponding map $\mathbb{R} \rightarrow \mathbb{R}^{2}$ is injective).
6. Let $I=(0,1)$ be the unit interval. Give an example of a map from the disjoint union $(0,1) \sqcup(1,2)$ to \mathbb{R}^{2} which is an immersion and injective but not an embedding.
Consider the "letter T " map,

$$
x \mapsto\left\{\begin{array}{ll}
(x-1 / 2,0) & x \in(0,1) \\
(0,1-x) & x \in(1,2)
\end{array} .\right.
$$

Draw this map: its image looks like the capital letter T. The map is locally linear near each point, so clearly an immersion. It is injective, as no point on the second interval has image with y-coordinate zero. But it does not have smooth inverse, as the sequence of points $f(1+1 / n)$ converges to $f(1 / 2)$.
7. (a) Prove that the $\operatorname{map} s q: G L_{n} \rightarrow G L_{n}$ given by $M \mapsto M^{2}$ is a local diffeomorphism at I (hint: compute its differential). To compute
the differential, let $M \in \operatorname{Mat}_{n}=T_{I} G L_{n}$. Then $d_{I} s q(v)=\lim _{\epsilon \rightarrow 0} \frac{(I+\epsilon M)^{2}-I}{\epsilon}=$ $\lim _{\epsilon} \frac{2 \epsilon M+\epsilon^{2} M^{2}}{\epsilon}=\lim _{\epsilon} 2 M+\epsilon M^{2}=2 M$. Thus the differential is given by the linear map $M \rightarrow 2 M$.
(b) Is this map a diffeomorphism? (Hint: look at the determinant.) No: it is not surjective, since $\left|M^{2}\right|=|M|^{2}>0$, so $s q(M)$ has positive determinant and a matrix such as $\left(\begin{array}{cccc}-1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right)$ with negative determinant cannot be in the image.
(c) Deduce that for any Lie group G, the map $s q: G \rightarrow G$ is a local diffeomorphism. Since G is a Lie group, for any $M \in G$ we have $M^{2} \in G$ as well, so the map $s q$ can be restricted to G. By the chain rule, its differential will then coincide with the restriction to $T_{I} G$ of $d_{I} s q$. Thus it will be the multiplication-by-two map on the linear space $T_{I} G$. This is an invertible (indeed, a scalar) matrix, therefore $s q_{G}$ is a local diffeomorphism.
8. True or false/short answer:
(a) Is the sphere S^{2} connected? Is it compact? Yes to both. Any two points can be connected by a path along the equator, and it is closed and bounded in \mathbb{R}^{3}, hence compact.
(b) If $f: X \rightarrow Y$ takes P to Q, there is a pair of parametrizations $\psi_{P}: U \rightarrow X, \psi_{Q}: V \rightarrow Y$ such that $U \subset T_{P}(X), V \subset T_{Q}(Y)$ are open and the composed map $U \rightarrow V$ is given by $d_{P} f$. This is true in the case that f is either a submersion or an immersion (equivalently: maximal rank). But not in general: for example the map $s q: \mathbb{R} \rightarrow \mathbb{R}$ given by $x \mapsto x^{2}$ has differential 0 at $x=0$, but cannot be expressed as the zero map for any smooth parametrization of any neighborhood $0 \in \mathbb{R}$ (as this would imply that there is an open neighborhood of 0 of points that all square to zero, which is absurd).
(c) A map is a local diffeomorphism if and only if it is both an immersion and a submersion True, since a linear map is invertible iff it is injective and surjective.
(d) The preimage of a critical value of a function $f: X \rightarrow Y$ is smooth. False: this is true (by the preimage theorem) for a regular value, but not for a critical value. For example consider the preimage $F^{-1}(0)$ of the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $F(x, y)=x y$ at the critical value $0 \in \mathbb{R}$.
(e) If a function $f: X \rightarrow Y$ is a submersion then every $Q \in Y$ is a regular value. True: a value $Q \in Y$ is regular if and only if f is a submersion locally for each $P \in f^{-1}(Q)$, and if f is a submersion then it is a submersion locally near every P. (In fact, the converse is also true: if every $Q \in Y$ is a regular value then f is a submersion.)

