Math 141 Midterm 1 and Final exam practice Topology, immersions, submersions, Lie groups.

1. Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous. Show that its graph $\Gamma(f) \subset \mathbb{R}^{m+n}$, defined by $\Gamma(f):=\{(x, y) \mid f(x)=y\} \subset \mathbb{R}^{m} \times \mathbb{R}^{n}$ is closed.
2. Show that \mathbb{R} is not homeomorphic to \mathbb{R}^{2}.
3. Compute the tangent space of the ellipsoid $x^{2}+y^{2}+2 z^{2}=1$ at the point $P=(0,0, \sqrt{2} / 2)$.
4. (a) Let $X \subset \mathbb{R}^{N}$ be a manifold of dimension $n \geq 1$ and $P \in X$ a point. Show that there is a coordinate $1 \leq i \leq N$ such that the i th coordinate map $\pi_{i}: X \rightarrow \mathbb{R}$ defined by $\pi_{i}\left(x_{1}, \ldots, x_{N}\right):=x_{i}$ is a submersion at P.
(b) Show more generally that it is possible to choose n different coordinate maps which are independent at P, i.e. such that the resulting map $X \rightarrow \mathbb{R}^{n}$ is a local diffeomorphism at P.
(c) Deduce that for any $X \in \mathbb{R}^{3}$ a two-dimensional surface and any $P \in X$, there is a chart $\psi: U \rightarrow X$ for a neighborhood of P with $U \subset \mathbb{R}^{2}$ and such that either $\psi(x, y)=(x, y, f(x, y))$ or $\psi(x, y)=(x, f(x, y), y)$ or $\psi(x, y)=$ $(f(x, y), x, y)$ for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
5. Show that the map $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $t \mapsto(\cos (t), \sin (t))$ is an immersion.
6. Let $I=(0,1)$ be the unit interval. Give an example of a map from the disjoint union $(0,1) \sqcup(1,2)$ to \mathbb{R}^{2} which is an immersion and injective but not an embedding.
7. (a) Prove that the map $s q: G L_{n} \rightarrow G L_{n}$ given by $M \mapsto M^{2}$ is a local diffeomorphism at I (hint: compute its differential).
(b) Is this map a diffeomorphism? (Hint: look at the determinant.)
(c) Deduce that for any Lie group G, the map $s q: G \rightarrow G$ is a local diffeomorphism.
8. True or false/short answer:
(a) Is the sphere S^{2} connected? Is it compact?
(b) If $f: X \rightarrow Y$ takes P to Q, there is a pair of parametrizations $\psi_{P}: U \rightarrow$ $X, \psi_{Q}: V \rightarrow Y$ such that $U \subset T_{P}(X), V \subset T_{Q}(Y)$ are open and the composed
$\operatorname{map} U \rightarrow V$ is given by $d_{P} f$.
(c) A map is a local diffeomorphism if and only if it is both an immersion and a submersion.
(d) The preimage of a critical value of a function $f: X \rightarrow Y$ is smooth.
(e) If a function $f: X \rightarrow Y$ is a submersion then every $Q \in Y$ is a regular value.
