Math 141 final practice solutions.

2.2.5 Let $f:[-1,1] \rightarrow[-1,1]$ be a map. Consider $g(x):=f(x)-x$. Then $f(0) \geq-1$ and $f(1) \leq 1$ (as both are in $[-1,1]$) so $g(-1) \geq 0, g(1) \leq 0$, and apply the intermediate value theorem.
2.2.7 (on the hard side.) Using the hint, WLOG f has no kernel and is therefore invertible. Define a function $g: S^{n-1} \rightarrow S^{n-1}$ by $g(v):=\frac{f(v)}{|f(v)|}$. Note that this is a smooth function, as f is smooth and $v \mapsto|v|$ is smooth outside of zero, therefore by invertibility of f, g is smooth on the image $f\left(S^{n-1}\right)$.

Let $Q=[0, \infty)^{n} \cap S^{n-1}$ be the positive quadrant of the sphere. Then for $v \in Q$ we see that the vector $f(v)$ has all nonnegative coefficients (by positivity of coefficients of f), so $g(v)=\frac{f(v)}{|v|}$ is in Q. Now Q is diffeomorphic to the disk D^{n-1} (if you want to prove this, first note that Q_{n} is diffeomorphic (via projection from the origin) to the "simplex" $\Delta^{n-1}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \geq 0, \sum x_{i}=1\right.$, which is the intersection of the upper quadrant with a skew hyperplane. Then use that the shifted set $\Delta^{n-1}-(1 / n, 1 / n, \ldots, 1 / n)$ is a convex set in the hyperplane defined by $\sum x_{i}=0$, and any compact convex set $C \subset V$ of a vector space is homeomorphic to the disk by the map $v \mapsto \frac{v}{r_{v}}$ for r_{v} the length of the radius of C in the direction of v).

Now apply the previous problem, 7 , to deduce that the map $g: Q \rightarrow Q$ has a fixed point, $v i n Q$, satisfying $\frac{f(v)}{|f(v)|}=v$. Thus v is an eigenvector with positive eigenvalue $|v|$.
2.3.5 Let $f=i_{X}: X \rightarrow Y$ be the inclusion. First: for M the dimension of the ambient space of Y and B^{M} the open unit M-disk, we have constructed a map $F: X \times \stackrel{\circ}{B}^{M} \rightarrow Y$ which is a submersion (hence transversal to Z) with $f(p)=F(p, 0)$. By compactness of X, there is a δ_{1} such that $v<\delta_{1} \operatorname{implies} f_{v}$ is at most ϵ away from X. Stability of embeddings (combined with the result of 1.6.11) implies that there is a δ_{2} with f_{v} an embedding for $|v|<\delta_{2}$. Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. By the transversality theorem, the set of $v \in B^{M}$ for which $f_{v} \pitchfork Z$ is dense, thus it contains points in the open ball $\stackrel{\circ}{\delta}_{\delta}^{M} \subset \stackrel{\circ}{B}^{M}$. For v such a point, first $|v|<\delta_{1}$ implies f_{v} is distance at most ϵ from f, secondly $|v|<\delta_{2}$ implies f_{v} is an embedding and by assumption on v, we have $f_{v} \pitchfork Z$.
(Alternative to denseness: consider the function $F_{<\delta}: F \mid X \times \stackrel{\circ}{B}_{\delta}^{M}$ (restriction to the open δ-disk). Then G is the restriction of a submersion to an open subset, hence still a submersion, so there is some $v \in \stackrel{\circ}{B}_{\delta}^{M}$ which satisfies transversality).

Alternative proof using a fact mentioned in class: I said that for any f : $X \rightarrow Y$ there is a homotopy f_{t} with $f_{0}=f$ such that outside of a measure zero
subset of $t \in[0,1]$, we have $f_{t} \pitchfork Z$; in particular, such transversal t are dense. Now for a compact manifold, both the property of being an immersion and the property of being distance $<\epsilon$ from f are stable. Hence for some $\delta>0$, we have f_{t} an immersion of distance $<\epsilon$ from f. By denseness, there is a value $t<\delta$ for which $f_{t} \pitchfork Z$.
2.3.7 This problem is actually false as stated. Example: X is the single point in the origin (or X is a circle through the origin in \mathbb{R}^{3} and the dimension $l=1$). It is true if we assume in addition that X does not pass through the origin. Assume X does not pass through the origin ${ }^{1}$. Consider the map $\alpha: G L_{N} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{N}$, given by $\alpha(A, v)=A \cdot v$ (action of an invertible matrix A on a vector). Then for any fixed $A \in G L_{N}$, the map α_{A} is an embedding of V in \mathbb{R}^{N}. Now the tangent space $T_{A} G L_{N}=M a t_{N \times N}$ is the N^{2}-dimenisional space of matrices, and for $M \in T_{A} G L_{N}$, we compute

$$
T_{v, A}(M)=\lim _{\epsilon \rightarrow 0} \frac{(A+\epsilon M) v-A v}{\epsilon}=M v
$$

Note that if $v \in \mathbb{R}^{N}$ is nonzero, the set of vectors $\left\{M v \mid M \in \operatorname{Mat}_{N \times N}\right\}$ is all of \mathbb{R}^{N}, hence $T_{A, v}: \operatorname{Mat}_{N \times N} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{N}$ is surjective (already so on the first component $\operatorname{Mat}_{N \times N}$ of the tangent space). Now if $w \in \mathbb{R}^{n}$ is a nonzero vector and $\alpha(A, v)=A v=w$ then v is a nonzero vector and thus α is a submersion at $p=(A, v)$. Since by assumption, X does not pass through zero, this implies that all points of X are regular values for α, so $\alpha \pitchfork X$ for each point of X. Therefore, for some choice of A, the map $\alpha_{A}: \mathbb{R}^{l} \rightarrow \mathbb{R}^{N}$ is transversal to X. As α_{A} is an embedding, this is equivalent to transversality of X with the hyperplane $A\left(\mathbb{R}^{k}\right)$.
2.4.4 We are given that there is a homotopy from f to a constant map f_{1}, i.e. such that $f_{1}(p)=q_{1} \forall p \in X$, for some fixed $q_{0} \in Y$. We are given that X is at least 1-dimensional. Then $\operatorname{dim}(X)+\operatorname{dim}(Z)=\operatorname{dim}(Y)$ implies Z is at most $\operatorname{dim}(Y)$ - 1-dimensional, so the image of the inclusion i_{Z} has measure zero, and a dense set of points of Y is not in Z. Choose a point q_{2} in $Y \backslash Z$ in the same connected component as q_{1} (possible for example by denseness, alternatively by replacing Y by a single connected component). Then any path from q_{1} to q_{2} defines a homotopy from f_{1} to the constant map f_{2} which maps all of x to the point q_{2}. Now by assumption, q_{2} is disjoint from Z, thus vacuously transversal; its $(\bmod 2)$ intersection number is zero. By transversality of homotopy, this implies that $I_{2}\left(f_{1}, Z\right)=0$, hence $I_{2}\left(f_{0}, Z\right)=0$.
2.4.7 Look at the identity map id : $S^{1} \rightarrow S^{1}$. This map is a diffeomorphism, hence a submersion, hence transversal to a single-point manifold $p \in S^{1}$. The $\bmod 2$ intersection number $I_{2}(\mathrm{id},\{p\})$, equal to the $\bmod 2$ degree of id, is equal to 1 . On the other hand, if S^{1} were simply connected, this would imply that any map $S^{1} \rightarrow S^{1}$, including the identity map, is homotopic to a constant map, which would imply by 2.4.4 above that (as S^{1} is ≥ 1-dimensional,) $I_{2}(\mathrm{id}, p)=0$, contradiction.
2.4.12 This follows from the fact that a map from a compact to a noncompact topological space cannot be surjective (the image of a compact set under a

[^0]continuous map is compact; this is easiest to understand via our other definition of compactness: the image of a closed bounded subset under a continuous map is closed and bounded). This means that there is some point $q \in Y$ with no preimage. This point is vacuously a regular value, so
$$
\operatorname{deg}_{2}(f)=\left|f^{-1}(q)\right| \quad \bmod 2=0
$$
2.6.1 The Borsuk-Ulam theorem states that if $f: S^{n-1} \rightarrow \mathbb{R}^{n} \backslash 0$ carries antipodal points to antipodal points, then $W_{2}(f)=1$. Here $W_{2}(f):=I_{2}(f, R)$ for $R=\{(0, \ldots, 0, r)\}$ a ray. Let $F: \mathbb{R}^{n} \backslash 0 \rightarrow S^{n}$ be the unit vector map, $v \mapsto \frac{v}{|v|}$ (continuous outside of $v=0$ as we have seen above). Then $R=F^{-1} e_{n}$ for $e_{n}=(0, \ldots, 0,1)$. Note that $F^{-1}\left(e_{n}\right)=\{(0, \ldots, 0, r) \mid r>0\} \subset \mathbb{R}^{n}$. We know that $T_{e_{n}} S^{1}=e_{n}^{\perp}=\left\{\left(x_{1}, \ldots, x_{n-1}, 0\right) \mid x_{i} \in \mathbb{R}\right\}$, the standard $n-1$ dimensional hyperplane. For $p=(0, \ldots, 0, r)$ with $r>0$, the differential $d_{p}(F)$ can be computed out to
\[

\left($$
\begin{array}{cccc}
1 / r & 0 & \ldots & 0 \\
0 & 1 / r & \ldots & 0 \\
\ldots & \ddots & \ldots & 0 \\
0 & 0 & \ldots & 1 / r \\
0 & 0 & \ldots & 0
\end{array}
$$\right)
\]

This is surjective, so e_{n} is a regular value of F. Thus by our result about transversality and regular values, $f \pitchfork R$ iff e_{n} is a regular value of the composed map $F \circ f: S^{n-1} \rightarrow S^{n-1}$, and since $f^{-1}(R)=(F \circ f)^{-1}\left(e_{n}\right)$ (and this remains true if f is replaced by a homotopic map), we see that $I_{2}(f, R)=I_{2}\left(F \circ f,\left\{e_{n}\right\}\right)$. Intersection number with a single point is equal to the degree, so $1=I_{2}(f, R)=$ $\operatorname{deg}_{2}(F \circ f)$. Now if $f: S^{n-1} \rightarrow S^{n-1}$ already has image in $S^{n-1} \subset \mathbb{R}^{n}$, define $\tilde{f}=i_{S^{n-1}} \circ f: S^{n-1} \rightarrow \mathbb{R}^{n}\left(\right.$ considered as a map $\left.S^{n-1} \rightarrow \mathbb{R}^{n}\right)$. The above argument then gives that $\operatorname{deg}(\tilde{f} \circ F)=1$, but in this case $\tilde{f} \circ F=f: S^{n-1} \rightarrow S^{n-1}$, completing the proof.

[^0]: ${ }^{1}$ With a little bit of extra work, you can eliminate the condition that X does not pass through zero if the sum of dimensions $l+n \geq N$.

