
Math 141 final practice solutions.

2.2.5 Let f : [−1, 1] → [−1, 1] be a map. Consider g(x) := f(x) − x. Then
f(0) ≥ −1 and f(1) ≤ 1 (as both are in [−1, 1]) so g(−1) ≥ 0, g(1) ≤ 0, and
apply the intermediate value theorem.

2.2.7 (on the hard side.) Using the hint, WLOG f has no kernel and is

therefore invertible. Define a function g : Sn−1 → Sn−1 by g(v) := f(v)
|f(v)| . Note

that this is a smooth function, as f is smooth and v 7→ |v| is smooth outside of
zero, therefore by invertibility of f , g is smooth on the image f(Sn−1).

Let Q = [0,∞)n ∩ Sn−1 be the positive quadrant of the sphere. Then for
v ∈ Q we see that the vector f(v) has all nonnegative coefficients (by positivity of

coefficients of f), so g(v) = f(v)
|v| is inQ. NowQ is diffeomorphic to the diskDn−1

(if you want to prove this, first note thatQn is diffeomorphic (via projection from
the origin) to the “simplex” ∆n−1 := {(x1, . . . , xn) | xi ≥ 0,

∑
xi = 1, which

is the intersection of the upper quadrant with a skew hyperplane. Then use
that the shifted set ∆n−1− (1/n, 1/n, . . . , 1/n) is a convex set in the hyperplane
defined by

∑
xi = 0, and any compact convex set C ⊂ V of a vector space is

homeomorphic to the disk by the map v 7→ v
rv

for rv the length of the radius of
C in the direction of v).

Now apply the previous problem, 7, to deduce that the map g : Q→ Q has

a fixed point, v inQ, satisfying f(v)
|f(v)| = v. Thus v is an eigenvector with positive

eigenvalue |v|.
2.3.5 Let f = iX : X → Y be the inclusion. First: for M the dimension

of the ambient space of Y and B̊M the open unit M -disk, we have constructed
a map F : X × B̊M → Y which is a submersion (hence transversal to Z) with
f(p) = F (p, 0). By compactness of X, there is a δ1 such that v < δ1 implies fv
is at most ε away from X. Stability of embeddings (combined with the result
of 1.6.11) implies that there is a δ2 with fv an embedding for |v| < δ2. Let
δ = min(δ1, δ2). By the transversality theorem, the set of v ∈ BM for which
fv t Z is dense, thus it contains points in the open ball B̊Mδ ⊂ B̊M . For v such
a point, first |v| < δ1 implies fv is distance at most ε from f , secondly |v| < δ2
implies fv is an embedding and by assumption on v, we have fv t Z.

(Alternative to denseness: consider the function F<δ : F | X × B̊Mδ (re-
striction to the open δ-disk). Then G is the restriction of a submersion to an
open subset, hence still a submersion, so there is some v ∈ B̊Mδ which satisfies
transversality).

Alternative proof using a fact mentioned in class: I said that for any f :
X → Y there is a homotopy ft with f0 = f such that outside of a measure zero
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subset of t ∈ [0, 1], we have ft t Z; in particular, such transversal t are dense.
Now for a compact manifold, both the property of being an immersion and the
property of being distance < ε from f are stable. Hence for some δ > 0, we have
ft an immersion of distance < ε from f . By denseness, there is a value t < δ for
which ft t Z.

2.3.7 This problem is actually false as stated. Example: X is the single
point in the origin (or X is a circle through the origin in R3 and the dimension
l = 1). It is true if we assume in addition that X does not pass through
the origin. Assume X does not pass through the origin1. Consider the map
α : GLN × Rk → RN , given by α(A, v) = A · v (action of an invertible matrix
A on a vector). Then for any fixed A ∈ GLN , the map αA is an embedding of
V in RN . Now the tangent space TAGLN = MatN×N is the N2-dimenisional
space of matrices, and for M ∈ TAGLN , we compute

Tv,A(M) = lim
ε→0

(A+ εM)v −Av
ε

= Mv.

Note that if v ∈ RN is nonzero, the set of vectors {Mv | M ∈ MatN×N} is all
of RN , hence TA,v : MatN×N × Rk → RN is surjective (already so on the first
component MatN×N of the tangent space). Now if w ∈ Rn is a nonzero vector
and α(A, v) = Av = w then v is a nonzero vector and thus α is a submersion at
p = (A, v). Since by assumption, X does not pass through zero, this implies that
all points of X are regular values for α, so α t X for each point of X. Therefore,
for some choice of A, the map αA : Rl → RN is transversal to X. As αA is an
embedding, this is equivalent to transversality of X with the hyperplane A(Rk).

2.4.4 We are given that there is a homotopy from f to a constant map f1,
i.e. such that f1(p) = q1∀p ∈ X, for some fixed q0 ∈ Y . We are given that X is
at least 1-dimensional. Then dim(X) + dim(Z) = dim(Y ) implies Z is at most
dim(Y )− 1-dimensional, so the image of the inclusion iZ has measure zero, and
a dense set of points of Y is not in Z. Choose a point q2 in Y \ Z in the same
connected component as q1 (possible for example by denseness, alternatively by
replacing Y by a single connected component). Then any path from q1 to q2
defines a homotopy from f1 to the constant map f2 which maps all of x to the
point q2. Now by assumption, q2 is disjoint from Z, thus vacuously transversal;
its (mod 2) intersection number is zero. By transversality of homotopy, this
implies that I2(f1, Z) = 0, hence I2(f0, Z) = 0.

2.4.7 Look at the identity map id : S1 → S1. This map is a diffeomorphism,
hence a submersion, hence transversal to a single-point manifold p ∈ S1. The
mod 2 intersection number I2(id, {p}), equal to the mod 2 degree of id, is equal
to 1. On the other hand, if S1 were simply connected, this would imply that
any map S1 → S1, including the identity map, is homotopic to a constant map,
which would imply by 2.4.4 above that (as S1 is ≥ 1-dimensional,) I2(id, p) = 0,
contradiction.

2.4.12 This follows from the fact that a map from a compact to a noncom-
pact topological space cannot be surjective (the image of a compact set under a

1With a little bit of extra work, you can eliminate the condition that X does not pass
through zero if the sum of dimensions l + n ≥ N .
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continuous map is compact; this is easiest to understand via our other definition
of compactness: the image of a closed bounded subset under a continuous map
is closed and bounded). This means that there is some point q ∈ Y with no
preimage. This point is vacuously a regular value, so

deg2(f) = |f−1(q)| mod 2 = 0.

2.6.1 The Borsuk-Ulam theorem states that if f : Sn−1 → Rn \ 0 carries
antipodal points to antipodal points, then W2(f) = 1. Here W2(f) := I2(f,R)
for R = {(0, . . . , 0, r)} a ray. Let F : Rn \ 0 → Sn be the unit vector map,
v 7→ v

|v| (continuous outside of v = 0 as we have seen above). Then R = F−1en

for en = (0, . . . , 0, 1). Note that F−1(en) = {(0, . . . , 0, r) | r > 0} ⊂ Rn. We
know that TenS

1 = e⊥n = {(x1, . . . , xn−1, 0) | xi ∈ R}, the standard n − 1-
dimensional hyperplane. For p = (0, . . . , 0, r) with r > 0, the differential dp(F )
can be computed out to 

1/r 0 . . . 0
0 1/r . . . 0

. . .
. . . . . . 0

0 0 . . . 1/r
0 0 . . . 0

 .

This is surjective, so en is a regular value of F. Thus by our result about transver-
sality and regular values, f t R iff en is a regular value of the composed map
F ◦ f : Sn−1 → Sn−1, and since f−1(R) = (F ◦ f)−1(en) (and this remains true
if f is replaced by a homotopic map), we see that I2(f,R) = I2(F ◦ f, {en}).
Intersection number with a single point is equal to the degree, so 1 = I2(f,R) =
deg2(F ◦ f). Now if f : Sn−1 → Sn−1 already has image in Sn−1 ⊂ Rn, define
f̃ = iSn−1 ◦ f : Sn−1 → Rn (considered as a map Sn−1 → Rn). The above argu-
ment then gives that deg(f̃ ◦F ) = 1, but in this case f̃ ◦F = f : Sn−1 → Sn−1,
completing the proof.
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