Math 141 final practice solutions.

2.2.5 Let f: [-1,1] — [~1,1] be a map. Consider g(z) := f(z) — z. Then
f(0) > =1 and f(1) <1 (as both are in [—1,1]) so g(—1) > 0,¢(1) < 0, and
apply the intermediate value theorem.

2.2.7 (on the hard side.) Using the hint, WLOG f has no kernel and is

therefore invertible. Define a function g : S~ ! — S"~1 by g(v) := % Note
that this is a smooth function, as f is smooth and v +— |v]| is smooth outside of
zero, therefore by invertibility of f, g is smooth on the image f(S™1).

Let @ = [0,00)" N S™~! be the positive quadrant of the sphere. Then for
v € @ we see that the vector f(v) has all nonnegative coefficients (by positivity of

coefficients of f), so g(v) = % isin Q. Now @ is diffeomorphic to the disk D™ ~!
(if you want to prove this, first note that @, is diffeomorphic (via projection from
the origin) to the “simplex” A"~ := {(z1,...,2,) | #; > 0,3 2; = 1, which
is the intersection of the upper quadrant with a skew hyperplane. Then use
that the shifted set A1 —(1/n,1/n,...,1/n) is a convex set in the hyperplane
defined by > x; = 0, and any compact convex set C' C V of a vector space is
homeomorphic to the disk by the map v — ;= for r, the length of the radius of
C in the direction of v).

Now apply the previous problem, 7, to deduce that the map g : Q — @ has

a fixed point, v in@Q, satisfying \%% = v. Thus v is an eigenvector with positive

eigenvalue |v|.

2.3.5 Let f =1ix : X — Y Dbe the inclusion. First: for M the dimension
of the ambient space of Y and BM the open unit M-disk, we have constructed
amap F: X x BM Y which is a submersion (hence transversal to Z) with
f(p) = F(p,0). By compactness of X, there is a d; such that v < §; implies f;,
is at most € away from X. Stability of embeddings (combined with the result
of 1.6.11) implies that there is a do with f, an embedding for |v| < 2. Let
§ = min(61,d2). By the transversality theorem, the set of v € BM for which
fv M Z is dense, thus it contains points in the open ball Bé‘/f C BM. For v such
a point, first |v| < d; implies f, is distance at most € from f, secondly |v| < da
implies f, is an embedding and by assumption on v, we have f, th Z.

(Alternative to denseness: consider the function F.s5 : F | X x Bé‘/f (re-
striction to the open J-disk). Then G is the restriction of a submersion to an
open subset, hence still a submersion, so there is some v € Béw which satisfies
transversality).

Alternative proof using a fact mentioned in class: I said that for any f :
X — Y there is a homotopy f; with fo = f such that outside of a measure zero



subset of t € [0,1], we have f; M Z; in particular, such transversal ¢ are dense.
Now for a compact manifold, both the property of being an immersion and the
property of being distance < € from f are stable. Hence for some 6 > 0, we have
fi an immersion of distance < € from f. By denseness, there is a value t < § for
which f; h Z.

2.3.7 This problem is actually false as stated. Example: X is the single
point in the origin (or X is a circle through the origin in R? and the dimension
I =1). It is true if we assume in addition that X does not pass through
the origin. Assume X does not pass through the origirﬂ Consider the map
a:GLy x RF — RN given by a(4,v) = A -v (action of an invertible matrix
A on a vector). Then for any fixed A € GLy, the map a4 is an embedding of
V in RN. Now the tangent space TaGLy = Matyyn is the N2-dimenisional
space of matrices, and for M € ThG Ly, we compute

Ty A(M) = lim (A+eM)v — Av

e—0 €

= M.

Note that if v € RY is nonzero, the set of vectors {Mv | M € Matyxn} is all
of RY, hence Tan : Matyxn X RF — RV is surjective (already so on the first
component Mat vy of the tangent space). Now if w € R™ is a nonzero vector
and a(A,v) = Av = w then v is a nonzero vector and thus « is a submersion at
p = (A, v). Since by assumption, X does not pass through zero, this implies that
all points of X are regular values for a, so o h X for each point of X. Therefore,
for some choice of A, the map a4 : R' — RY is transversal to X. As a4 is an
embedding, this is equivalent to transversality of X with the hyperplane A(R¥).

2.4.4 We are given that there is a homotopy from f to a constant map fi,
i.e. such that f1(p) = ¢1Vp € X, for some fixed ¢y € Y. We are given that X is
at least 1-dimensional. Then dim(X) + dim(Z) = dim(Y") implies Z is at most
dim(Y") — 1-dimensional, so the image of the inclusion iz has measure zero, and
a dense set of points of Y is not in Z. Choose a point ¢z in Y \ Z in the same
connected component as ¢; (possible for example by denseness, alternatively by
replacing Y by a single connected component). Then any path from ¢; to go
defines a homotopy from f; to the constant map fo which maps all of = to the
point ¢2. Now by assumption, ¢o is disjoint from Z, thus vacuously transversal;
its (mod 2) intersection number is zero. By transversality of homotopy, this
implies that Is(f1,Z) = 0, hence Iz(fy, Z) = 0.

2.4.7 Look at the identity map id : S' — S'. This map is a diffeomorphism,
hence a submersion, hence transversal to a single-point manifold p € S'. The
mod 2 intersection number I5(id, {p}), equal to the mod 2 degree of id, is equal
to 1. On the other hand, if S* were simply connected, this would imply that
any map S' — S, including the identity map, is homotopic to a constant map,
which would imply by 2.4.4 above that (as S* is > 1-dimensional,) I5(id, p) = 0,
contradiction.

2.4.12 This follows from the fact that a map from a compact to a noncom-
pact topological space cannot be surjective (the image of a compact set under a

LWith a little bit of extra work, you can eliminate the condition that X does not pass
through zero if the sum of dimensions [ +n > N.



continuous map is compact; this is easiest to understand via our other definition
of compactness: the image of a closed bounded subset under a continuous map
is closed and bounded). This means that there is some point ¢ € Y with no
preimage. This point is vacuously a regular value, so

deg,(f) =|f""(q)] mod2=0.

2.6.1 The Borsuk-Ulam theorem states that if f : S*~1 — R™\ 0 carries
antipodal points to antipodal points, then Wa(f) = 1. Here Wa(f) := L2(f, R)
for R = {(0,...,0,7)} a ray. Let F': R"\ 0 — S™ be the unit vector map,
v (continuous outside of v = 0 as we have seen above). Then R = F~le,
for e, = (0,...,0,1). Note that F~(e,) = {(0,...,0,7) | r > 0} C R". We
know that T, S' = e = {(21,...,2,_1,0) | z; € R}, the standard n — 1-
dimensional hyperplane. For p = (0,...,0,r) with » > 0, the differential d,(F)
can be computed out to

1/r 0 0
0 1/r 0
0 0o ... 1/r
0 0 0

This is surjective, so e, is a regular value of F. Thus by our result about transver-
sality and regular values, f h R iff e, is a regular value of the composed map
Fof:8" 1! — Sn=1 and since f~}(R) = (Fo f)~!(e,) (and this remains true
if f is replaced by a homotopic map), we see that Ir(f, R) = I2(F o f,{e,}).
Intersection number with a single point is equal to the degree, so 1 = I1(f, R) =
deg,(F o f). Now if f: S"~! — S"~! already has image in S"~1 C R", define
f=igniof: 8" 1 5 R" (considered as a map S"~! — R"). The above argu-
ment then gives that deg(fo F) =1, but in this case foF =f:8m1 5 gn-1
completing the proof.



