Math 143 Elementary Algebraic Geometry, Fall 2018. Instructor: Dmitry Tonkonog Practice Midterm

The actual midterm will be 80 minutes long. No notes, books or calculators are allowed.
Problem 1. Consider \mathbb{C}^{3} with coordinates $x, y, z \in \mathbb{C}$. Let $V \subset \mathbb{C}^{3}$ be the union of the plane $\{z=0\}$ with the line $\{x=y=0\}$.
(a) Show that V is an affine variety.
(b) Let $I \subset \mathbb{C}[x, y, z]$ be the ideal consisting of all polynomials $f(x, y, z)$ such that $f(p)=0$ for all $p \in V$. Find a finite set of polynomials generating I (with a proof).

Problem 2.

(a) What does it mean for an ideal $I \subset A$ to be maximal? Write the definition.
(b) Prove that every maximal ideal in $\mathbb{C}[x]$ has the form $(x-a)$ for some $a \in \mathbb{C}$.

Problem 3. Consider $\mathbb{C} P^{2}$ with homogeneous coordinates $[x: y: z]$. Consider the following 5 points in $\mathbb{C} P^{2}$:
$p_{1}=[0: 0: 1]$,
$p_{2}=[1: 0: 1]$,
$p_{3}=[2: 0: 1]$,
$p_{4}=[0: 1: 1]$,
$p_{5}=[0: 2: 1]$.
Consider 5 other points $q_{1}, \ldots, q_{5} \in \mathbb{C} P^{2}$ which are pairwise distinct and all belong to the set $\left\{x^{2}+y^{2}+z^{2}=0\right\} \subset \mathbb{C} P^{2}$.
Does there exist a projective transformation $\phi: \mathbb{C} P^{2} \rightarrow \mathbb{C} P^{2}$ such that $\phi\left(p_{i}\right)=q_{i}, i=$ $1, \ldots, 5$?
Hint: find a conic passing through p_{1}, \ldots, p_{5}. Is it smooth?
Problem 4. Consider the following system of equations in \mathbb{C}^{2} :

$$
\left\{\begin{array}{l}
y=x^{2} \\
y=x^{3}
\end{array}\right.
$$

(a) Rewrite it in projective coordinates $[x: y: z]$ for $\mathbb{C} P^{2}$.
(b) Find all solutions to this system of equations in $\mathbb{C} P^{2}$.

Problem 5. (a) Consider the ideal generated by $I=(x-1)$ in the ring $A=\mathbb{C}[x, y] /(x y)$. Show that I is maximal.
(b) Show that the localization A_{I} is isomorphic to $\mathbb{C}[x]_{(x-1)}$.

Hint: argue that $x=x / 1$ is invertible in A_{I}. Deduce that $y=y / 1$ is zero in A_{I}.
Note: the geometric picture is that the equation $x=1$ defines a single point in the variety $x y=0$, and this point is smooth.

Solution to Problem 1.

(a) V is given by the following two equations: $x z=0, y z=0$. Indeed, they hold whenever $z=0$, or $y=0$ and $x=0$.
(b) Answer: $I=(x z, y z)$. It is clear that $(x z, y z) \subset I$ because both functions $x z, y z$ vanish on V. To prove the converse, observe that $I=(x) \cap(y, z)$, because the ideal (x) describes all functions vanishing on $\{x=0\}$, and the ideal (y, z) describes all functions vanishing on $\{y=z=0\}$.

Suppose $f \in(x) \cap(y, z)=I$. Since $f \in(x)$, we have $f=x g$ for a polynomial g. Next, it is clear that (y, z) is prime so $f=x g \in(y, z)$ implies $g \in(y, z)$. This means $f \in(x y, x z)$.

Note: an alternative proof that $I \subset(x z, y z)$. (Essentially equivalent to the previous one, but written in more elementary terms.) Suppose $f(x, y, z)=\sum a_{i j k} x^{i} y^{j} z^{k}$ is a polynomial vanishes identically on V. Here $a_{i j k}, i, j, k \geq 0$ are its coefficients.

Since f vanishes identically on $\{z=0\}$, the polynomial $f(x, y, 0)$ is identically zero. This means that $a_{i j 0}=0$.

Since f vanishes identically on $\{x=y=0\}$, the polynomial $f(0,0, z)$ is identically zero. This means that $a_{00 k}=0$.

Combining this together, f is a sum of monomials of the form $x^{i} y^{j} z^{k}$ where:
$k>0$, and
either $i>0$ or $j>0$.
This means that $x^{i} y^{j} z^{k}$ is divisible either by $x z$ or by $y z$, respectively. In both cases, it implies that $x^{i} y^{j} z^{k} \subset(x z, y z)$.

Solution to Problem 2.

(a) There exists no ideal J such that $I \subset J \subset A, J \neq I, J \neq A$.
(b) Because $\mathbb{C}[x]$ is a principal ideal domain, every ideal $I \subset \mathbb{C}[x]$ is generated by one element: $I=(f)$. Over \mathbb{C}, f decomposes as a product of linear functions $f=\left(x-a_{1}\right) \ldots\left(x-a_{n}\right)$. If $n>1$, we have $(f) \subset\left(x-a_{1}\right) \subset A$ where both inclusions are strict, so (f) is not maximal.

If $f=x-a$, then the map $\mathbb{C}[x] /(f) \rightarrow \mathbb{C}$, given by $g \mapsto g(a)$, is an isomorphism. Indeed, it's clearly surjective, and if $g \in \mathbb{C}[x]$ is in the kernel, then g is divisible by $x-a$ so g is actually zero in $A /(f)$. We have shown that $\mathbb{C}[x] /(f)$ is a field, so (f) is maximal.

Solution to Problem 3.

The points p_{i} lie on the conic $\{x y=0\}$ which is singular. By uniqueness, there is no other conic passing through these points, in particular, no smooth conic.

The points q_{i} lie on the smooth conic $\left\{x^{2}+y^{2}+z^{2}=0\right\}$. By uniqueness, there is no other conic passing through these points, in particular, no singular conic.

Projective transformations take conics to conics, and singular/smooth conics to singular/smooth ones. The statement clearly follows.

Solution to Problem 4.

(a)

$$
\left\{\begin{array}{l}
z y=x^{2} \\
z^{2} y=x^{3}
\end{array}\right.
$$

(b) In the affine coordinates using the chart $z=1$, the solutions are $(0,0)$ and $(1,1)$. In the complement $z=0$ to the affine chart, there is one more solution: $z=x=0$. The complete answer is 3 solutions: $[0: 0: 1],[1: 1: 1],[0: 1: 0]$.
Solution to Problem 5.
(a) We want to prove that A / I is a field. Indeed,

$$
A / I \cong \frac{\mathbb{C}[x, y]}{(x y, x-1)} \cong \frac{\mathbb{C}[y]}{(y)} \cong \mathbb{C} .
$$

(b) Since $x \notin I, 1 / x \in A_{I}$ by definition, so x is invertible. Now $x y=0$ implies that $x^{-1} x y=y=0$ in A_{I}. So we can add the relation $y=0$ before localizing and write

$$
A_{I} \cong\left(\frac{\mathbb{C}[x, y]}{(x y, y)}\right)_{(x-1)} \cong \mathbb{C}[x]_{(x-1)}
$$

