Math 143 Elementary Algebraic Geometry, Fall 2018. Instructor: Dmitry Tonkonog

Homework Assigment 4, due: September 25

Problem 1. Solve 1.9 in UCA.
Problem 2. Let A be a local ring and x an element in its maximal ideal. Prove that $1+x$ is invertible.

Problem 3. Let A be a ring in which every element satisfies $x^{n}=x$ (for some $n \geq 2$ depending on x). Show that every prime ideal in A is maximal.

Problem 4. Show that $A=k[x, y] /\left(x^{n}, y^{m}\right)$ is a local ring, for any $n, m \geq 1$.
Hint: show that any polynomial $f(x, y)$ with non-vanishing constant term is invertible in A. For this, write $f(x, y)=a+f_{0}(x, y)$ where f_{0} has vanishing constant term, write a Taylor expansion for $\frac{1}{a+f_{0}(x, y)}$ at the origin, and prove that all but finitely many terms in the Taylor expansion are zero in A.
Note: suppose $f_{1}, \ldots, f_{k} \in k\left[x_{1}, \ldots, x_{n}\right]$ are polynomials. Then $k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{k}\right)$ is a local ring if and only if the solution set $\left\{f_{1}=\ldots=f_{k}=0\right\}$ consists of a single point. In this setting, one can define the intersection multiplicity of the hypersurfaces $\left\{f_{1}=0\right\}, \ldots,\left\{f_{k}=0\right\}$ (intersecting at a single point) purely in terms of the ring $k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{k}\right)$, in the spirit of how we studied tangent spaces. We may return to this later in the course; you are not required to prove any of this now.

