Math 143 Elementary Algebraic Geometry, Fall 2018. Instructor: Dmitry Tonkonog
Homework Assigment 3, due: September 18
Problem 1. Read about quadratic reciprocity and solve 0.13 in UCA.
Problem 2. The ring $\mathbb{Z}[i]$ is sometimes called the ring of Gaussian numbers. For $f=x+i y \in$ $\mathbb{Z}[i]$, define $|f|=x^{2}+y^{2}$. Show that for any $f, g \in \mathbb{Z}[i]$, there exist $q, r \in \mathbb{Z}[i]$ such that

$$
f=q g+r
$$

and $|r|<|g|$. This means that for Gaussian numbers, one can perform division with remainder. Deduce that every ideal in $\mathbb{Z}[i]$ is generated by one element. See 0.15 in UAC for a hint.

Problem 3. Prove that $3 \in \mathbb{Z}[i]$ is prime, $7 \in \mathbb{Z}[i]$ is prime, but $5 \in \mathbb{Z}[i]$ is not prime. Find the prime decomposition of $5 \in \mathbb{Z}[i]$.

Problem 4. Let p be a prime integer. Prove that p is not prime in $\mathbb{Z}[i] \Longleftrightarrow p=z \bar{z}$ where z is a prime Gaussian number $\Longleftrightarrow p$ is a sum of two squares (of integers) \Longleftrightarrow the equation $x^{2}+1=0$ has an integer solution modulo p.
Hint: use that $x^{2}+1=(x-i)(x+i)$.
Note: arguing a bit more, one can show that a prime integer p is not prime in $\mathbb{Z}[i]$ if and only if $p=4 k+3$. You are not required to prove this.

