Math 143 Elementary Algebraic Geometry, Fall 2018. Instructor: Dmitry Tonkonog

Homework Assignment 1, due: September 11

Problem 1. Find the singular points of the following affine curves:

(a)
$$x^2 = x^6 + y^4$$
,
(b) $xy = x^6 + y^6$.

Problem 2. Let us write down a polynomial $f \in \mathbb{C}[x, y]$ as follows:

$$f = f_0 + f_1 + f_2 + \dots$$

where $f_i \in \mathbb{C}[x, y]$ is homogeneous of degree *i* (in particular, $f_0 \in \mathbb{C}$ is a constant).

Let $r \ge 0$ be the minimal number such that $f_i \ne 0$. We say that f vanishes to order r at the point (0,0).

(a) Show that the point p = (0, 0) belongs to the affine curve $\{f = 0\}$ if and only if $f_0 = 0$; and that it is a singular point of the curve if and only if $f_1 = 0$.

(b) Suppose f has degree $d \ge 2$ and vanishes to order d - 1 at (0,0). Let $L \subset \mathbb{C}^2$ be a line passing through (0,0). Show that $L \cap C$ consists of at most 2 points: the point (0,0) and another point p_L (which may coincide with (0,0) for some lines L).

(c) In the setting of (b), show that the affine curve $C = \{f(x, y) = 0\}$ admits a rational parametrization. This means that there exist non-constant rational functions x(t), y(t) in one variable t such that

 $(x(t), y(t)) \in C$ for all t such that x(t), y(t) are defined.

Recall that a rational function s is a fraction of two polynomials, and for $t \in \mathbb{C}$ one says that s(t) is defined if its denominator does not vanish at t.

Hint. Consider a line L given by x = ty where t is a parameter. Let $p_L = (x(t), y(t))$ be the point on C introduced in item (b). Argue that the resulting x(t), y(t) are rational functions. For this, write $f(x, y) = f_{d-1}(x, y) + f_d(x, y)$ where f_{d-1} and f_d are homogeneous of degrees d-1 and d, respectively, and solve the following to find y(t):

$$f_{d-1}(ty, y) + f_d(ty, y) = 0.$$

Remarks — not part of the homework. (1): projectivizing the statement of item (c), one concludes that there exists a polynomial map $\mathbb{C}P^1 \to \mathbb{C}P^2$ whose image is the projective curve corresponding to $\{f = 0\}$. (2): in contrast, a smooth curve of degree at least 3 does not admit a rational parametrization. We might return to this later in the course.

Problem 3. Solve 1.10 in UAG (Sylvester's determinant).

Problem 4. Solve 1.2 in UCA (about the product of ideals).