# Math 143 Elementary Algebraic Geometry, Fall 2018. Instructor: Dmitry Tonkonog 

Homework Assigment 1, due: September 11
Problem 1. Find the singular points of the following affine curves:
(a) $x^{2}=x^{6}+y^{4}$,
(b) $x y=x^{6}+y^{6}$.

Problem 2. Let us write down a polynomial $f \in \mathbb{C}[x, y]$ as follows:

$$
f=f_{0}+f_{1}+f_{2}+\ldots
$$

where $f_{i} \in \mathbb{C}[x, y]$ is homogeneous of degree $i$ (in particular, $f_{0} \in \mathbb{C}$ is a constant).
Let $r \geq 0$ be the minimal number such that $f_{i} \neq 0$. We say that $f$ vanishes to order $r$ at the point $(0,0)$.
(a) Show that the point $p=(0,0)$ belongs to the affine curve $\{f=0\}$ if and only if $f_{0}=0$; and that it is a singular point of the curve if and only if $f_{1}=0$.
(b) Suppose $f$ has degree $d \geq 2$ and vanishes to order $d-1$ at $(0,0)$. Let $L \subset \mathbb{C}^{2}$ be a line passing through $(0,0)$. Show that $L \cap C$ consists of at most 2 points: the point $(0,0)$ and another point $p_{L}$ (which may coincide with $(0,0)$ for some lines $L$ ).
(c) In the setting of (b), show that the affine curve $C=\{f(x, y)=0\}$ admits a rational parametrization. This means that there exist non-constant rational functions $x(t), y(t)$ in one variable $t$ such that

$$
(x(t), y(t)) \in C \text { for all } t \text { such that } x(t), y(t) \text { are defined. }
$$

Recall that a rational function $s$ is a fraction of two polynomials, and for $t \in \mathbb{C}$ one says that $s(t)$ is defined if its denominator does not vanish at $t$.

Hint. Consider a line L given by $x=$ ty where $t$ is a parameter. Let $p_{L}=(x(t), y(t))$ be the point on $C$ introduced in item (b). Argue that the resulting $x(t), y(t)$ are rational functions. For this, write $f(x, y)=f_{d-1}(x, y)+f_{d}(x, y)$ where $f_{d-1}$ and $f_{d}$ are homogeneous of degrees $d-1$ and $d$, respectively, and solve the following to find $y(t)$ :

$$
f_{d-1}(t y, y)+f_{d}(t y, y)=0 .
$$

Remarks - not part of the homework. (1): projectivizing the statement of item (c), one concludes that there exists a polynomial map $\mathbb{C} P^{1} \rightarrow \mathbb{C} P^{2}$ whose image is the projective curve corresponding to $\{f=0\}$. (2): in contrast, a smooth curve of degree at least 3 does not admit a rational parametrization. We might return to this later in the course.

Problem 3. Solve 1.10 in UAG (Sylvester's determinant).
Problem 4. Solve 1.2 in UCA (about the product of ideals).

