Math 143 Elementary Algebraic Geometry, Fall 2018. Instructor: Dmitry Tonkonog

Homework Assigment 1, due: September 4

Problem 1. Consider the map

$$
\sigma: \mathbb{P}^{r-1} \times \mathbb{P}^{s-1} \rightarrow \mathbb{P}^{r s-1}
$$

given by the formula

$$
\left(\left[x_{1}: x_{2}: \ldots: x_{r}\right],\left[y_{1}: y_{2}: \ldots: y_{s}\right]\right) \mapsto\left[x_{1} y_{1}: x_{1} y_{2}: \ldots x_{1} y_{s}: x_{2} y_{1}: x_{2} y_{2}: \ldots\right]
$$

It is called the Segre embedding.
(a) For convenience, let us index the coordinates on $\mathbb{C}^{r s}$ by the symbols $z_{i j}$ where $i=1, \ldots, r$ and $j=1, \ldots, s$. Show that the image of the Segre embedding is given by the collection of equations $\left\{z_{i j} z_{k l}=z_{i l} z_{k j}\right\}$.
(b) Show that σ is indeed an embedding (is injective).

Hint: consider the special case $r=s=2$. Then $\sigma: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ is given by

$$
\left(\left[x_{1}: x_{2}\right],\left[y_{1}: y_{2}\right]\right) \mapsto\left[x_{1} y_{1}: x_{1} y_{2}: x_{2} y_{1}: x_{2} y_{2}\right]
$$

Let $[u: v: z: w]$ be the coordinates on \mathbb{P}^{3}, then item (a) says that the image of σ is given by the single equation $u w=v z$. We now see that the projective conic in \mathbb{P}^{3} is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Problem 2. Solve 1.9 in [UAG]: let p_{1}, \ldots, p_{4} be 4 points in \mathbb{P}^{2} where no 3 points are collinear. Without loss of generality, assume that these points are $[1: 0: 0],[0: 1: 0]$, $[0: 0: 1]$, $[1: 1: 1]$. (Recall that $P G L(3)$ acts transitively on 4 -tuples of points in \mathbb{P}^{2}, where no 3 points are collinear).
(a) Find all conics which pass through the 4 points above.

Hint: start with a general conic $a x^{2}+b y^{2}+c z^{2}+e x y+f x z+g x z$ and see what it means for it to pass through the above points.
(b) Prove that there exists a conic passing through any 5 points (you may assume that no 3 points are collinear).
Hint: find a conic from part (a) which additionally passes through any given fifth point.
Problem 3. Give an example (explicit equations in projective coordinates) of two smooth projective conics in $\mathbb{C} P^{2}$ that intersect in exactly two distinct points, where one intersection has multiplicity 3 and the other has multiplicity 1 . A conic is smooth is and only if it is not a union of two lines and not a double line.
Hint: It is easy to guess an example of two conics $f_{1}=0, f_{2}=0$ with f_{1} is a union of two lines and f_{2} smooth, which have the desired intersection multiplicities. For example, take $f_{1}(x, y)=x y$ (a union of 2 lines in affine coordinates), and let $f_{2}=0$ be a circle passing through the origin and tangent to the x-axis. Write an explicit equation. Then it intersects the x-axis with multiplicity 2 and the y-axis with multiplicity 1. The total intersection multiplicity of $f_{1}=0$ and $f_{2}=0$ at the origin should hence be 3. This is verified by the Bezout theorem and the fact that $f_{1}=f_{2}=0$ has only one more solution except for $x=y=0$ (why?), and that other intersection point is transverse (why?). See the next page.

Now replace the singular conic $f_{1}=0$ with the conic $f_{1}+\alpha f_{2}=0$ for some $\alpha \in \mathbb{C}, \alpha \neq 0$. Why is it smooth, for generic α ? What can you say about the intersection of the conics $f_{1}+\alpha f_{2}=0$ and $f_{2}=0$?

