
Math 143 Elementary Algebraic Geometry, Fall 2018. Instructor: Dmitry Tonkonog

Practice Final

The final will be 3 hours long. No notes, books or calculators are allowed.

Problem 1. Compute the intersection multiplicity at the origin of the following two affine
curves: {

(x2 + y2)2 + 3x2y − y3 = 0,

(x2 + y2)3 − 4x2y2 = 0.

Problem 2. Find all intersection points of the following two curves in CP 2, and find the
multiplicity of each point: {

y2z − x3 + xz2 = 0,

x− z = 0.

Problem 3. Let X ⊂ CP 2 be the the union of two lines intersecting at a single point.
Compute the Hilbert function hX(d).

Problem 4. (a) What does it mean for a ring A to be normal? Give the definition.

(b) Consider f = y2 − x2 − x3 and A = R[x, y]/(f). Show that A is not normal.

Hint: show that the element y/x ∈ FracA is integral over A.

(c) Prove that the integral closure of the ring A from item (b) is isomorphic to R[t].

Hint: concretely, the integral closure of A is R[ yx ] ⊂ FracA.

Problem 5. Let A be a Noetherian ring, and I ⊂ A an ideal. Prove that there exists a
positive integer r such that (rad I)r ⊂ I.

Note: we proved this in class; you can repeat the proof.

Problem 6. (a) What does it mean for a ring A to be Artinian? Give the definition.

(b) Suppose I ⊂ k[x1, . . . , xn] is an ideal such that V (I) = {p1, . . . , ps} consists of finitely
many points. Suppose that g ∈ k[x1, . . . , xn] is a polynomial such that

g(p1) = . . . = g(ps) = 0.

Prove that for some positive integer r, gr ∈ I.

Problem 7. Let R be a graded Noetherian ring.

(a) What does it mean for an ideal I ⊂ R to be homogeneous? Give the definition.

(b) Prove that nilradR is a homogeneous ideal in R.

Hint: suppose f ∈ R is nilpotent. Write f =
∑
fi as a finite sum of homogeneous elements,

fi ∈ Ri. Show that each fi is also nilpotent.

To do so, use induction on the number s of non-trivial summands in f =
∑
fi. Suppose fn =

(
∑
fi)

n = 0, expand this power, and look at the highest degree summand in the expansion.
1



Problem 8. Let A = k[x1, . . . , xn], f, g ∈ A be coprime (i.e. they are not divisible by a
common non-constant polynomial h), and I = (f, g). Prove that the following is a short exact
sequence of A-modules:

0→ A
(−g,f)−−−−→ A⊕A

(
f
g

)
−−−→ I → 0.

Above, the first map takes h to (−gh, fh) and the second map takes (h1, h2) to fh1 + gh2.

See the next page for the solutions.



Problem 1. Answer: 14. Use the algorithm explained in class.

Problem 2. Answer: There are two intersection points, [1 : 0 : 1] and [0 : 1 : 0]. Their
intersection multiplicities are 2 and 1, respectively.

Solution: First, one computes the intersection points; I skip this part. Let us, for example,
compute the intersection multiplicity of [0 : 1 : 0]. This point lies in the affine chart y = 1
(note that it does not lie in the charts x = 1 or z = 1, so I have to use the chart y = 1).
Setting y = 1 in the curve equations, I get the following:

z − x3 + xz2 = 0,

x− z = 0.

The point under consideration is (0, 0) in this chart. The intersection multiplicity is 1, and it
can be verified in several different ways.

The first way is to compute the derivatives: (0, 1) and (1,−1), and notice that they are not
proportional to each other, so the intersection is transverse, which is the same as the fact that
it has multiplicity 1.

The second way to verify this is to use our algorithm.

µ0(−x3 + xz2 + z, x− z) = µ0(−x3 + xz2 + z + x2(x− z), x− z) = µ0(z, x− z) = 1.

The third way is to note that x− z is a line, so the intersection multiplicity if the multiplicity
of 0 as a root of the equation z − x3 + xz2 = 0 after we substitute x = z. It becomes:

−x3 + x3 + x = x,

so the multiplicity is 1.

By Bezout’s theorem, the multiplicity at [1 : 0 : 1] is 2. Note that you could have computed
the multiplicity at [1 : 0 : 1] using the algorith, too. Don’t forget to pass to an affine chart in
order to run the algorithm.

Problem 3. Answer: h(d) = 2d+ 1 for d ≥ 1.

Solution: Let [x0 : x1 : x2] be the homogeneous coordinates on CP 2. Because the group
PGL(3) of projective transformations acts transitively on CP 2, we may assume that the
intersection point is [1 : 0 : 0]. In the affine chart C2 where the last projective coordinate
is set to 1, X become a union of two affine lines intersecting at the origin. There is a
linear map C2 → C2 taking that union of affine lines to {x0x1 = 0}. This map induces a
projective transformation CP 2 → CP 2 taking the whole projective variety X to the one given
by x0x1 = 0.

Let us compute the dimension of
C[x0, x1, x2]d

(x0x1)d
.

The basis of this vector space over C consists of monomials that are not divisible by x0x1,
and the list of such monomials is:

xd0, x
d−1
0 x2, x

d−2
0 x22, . . . , x

d
2,

xd1, x
d−1
1 x2, x

d−2
1 x22, . . . , x1x

d−1
2 .



There are 2d+ 1 monomials in this list. So the dimension of

C[x0, x1, x2]d
(x0x1)d

is 2d+ 1.

Problem 4. (a) A is normal if A equals its integral closure inside Frac(A).

(b) Let t = y
x , then in FracA we have t2 − x − 1 = 0, which means that t is in the integral

closure of A. Because t /∈ A, A is not normal.

(c) Let Ā ⊂ FracA be the integral closure of A. We have shown in (b) that A ⊂ R[ yx ] ⊂ Ā.

It was shown in class that R[t] is a normal ring, so R[ yx ] = R[ yx ]. Then the above chain of

inclusions implies Ā ⊂ R[ yx ] = R[ yx ] ⊂ Ā, which means R[ yx ] = Ā.

Problem 5. Suppose rad I = (f1, . . . , fn). There exist ri ∈ Z>0 such that a f rii ∈ I. Let
r = sup{ri}i=1,...,n. Then any element of I has the form a1f1 + . . . + anfn for some ai ∈ A.
We claim that (a1f1 + . . . + anfn)rn ∈ I. Indeed, by the Binomial Theorem, every term in

the expansion of that power has the form . . . · f i11 . . . f inn with
∑
ij ≥ rn. So at least one of

the coefficients ij satisfies ij ≥ r. Then the corresponding element f
ij
j ∈ I.

Problem 6. (a) A is Artinian if it satisfies the descending chain condition for ideals: every
descending chain of ideals

I1 ⊃ I2 ⊃ . . .
eventually stabilizes: Ij = Ij+1 = . . .

(b) By theorems proved in class: A = k[x1, . . . , xn]/I is Artinian, and it holds in A that
(mp1 · . . .mpr)r = 0 for some r. Here mpi is the maximal ideal consisting of all functions
vanishing at pi. We are given that g ∈ mpi for all i, consequently g ∈ mp1 ∩ . . . ∩ mps =
mp1 . . .mps . So gr = 0 in A, wich means gr ∈ I.

Problem 7. Suppose fn = 0, write f =
∑
fi as a sum of homogeneous elements of degree

i. We show by induction on the number s of summands that all the fi are nilpotent. When
s = 0, the claim is tautological. Otherwise, let fm be the highest-degree term, so fnm is the
unique highest-degree term of fn, and is therefore zero. Since fm is nilpotent, so is f − fm,
which has s− 1 summands, all of which are nilpotent by induction.

By the Noetherian property, I = nilradA is generated by a finite collection of polynomi-
als. Then it is also generated by the collection of all homogeneous summands of all these
polynimials, by what is shown above.

Problem 8. Let us check, for example, that the kernel of the second map lies in the image of
the first map (the rest is very easy). Suppose fh1 + gh2 = 0. Because f, g are coprime, h1 is
divisible by g: h1 = gH1. Similarly, h2 = fH2. We have

fgH1 + fgH2 = 0,

so H1 = −H2. Denote H1 = h, then (h1, h2) = (gh,−fh), so it is in the image of the first
map.


