Math 185 Complex Analysis, Fall 2017. Instructor: Dmitry Tonkonog

Practice Midterm 2

The midterm will be 60 min long, no notes allowed.

1. Let $\sum_{n=0}^{\infty} a_n (z - \pi i)^n$ be the Taylor expansion of

 $f(z) = \sinh z$

at the point $z_0 = \pi i$. Find the coefficients a_3, a_4 .

2. Using the Taylor expansion for 1/(1-z), find the Taylor expansion of $\frac{1}{1}$

$$\frac{1}{(1+z^2)^2}$$

at the origin and state its radius of convergence.

3. Suppose a Taylor series $\sum_{n=0}^{\infty} c_n z^n$ converges for all z such that $|z| \leq R$. Prove that there exists a number $M \in \mathbb{R}$ such that $|c_n| < M/R^n$ for all n.

4. Compute the following integral:

$$\int_{|z|=5} \sin z \left(\frac{1}{z^4} - \frac{1}{(z-\pi)^4} \right) dz.$$

The countour is oriented counterclockwise.

5. Compute the following integral:

$$\int_{|z+1|=1} \frac{dz}{(1+z)(z-1)^2}.$$

The contour is oriented counterclockwise.

Answers can be found on the next page.

Answers:

- 1. $a_3 = -1/6, a_4 = 0.$
- 2. $\sum_{n=0}^{\infty} (n+1)(-1)^n z^{2n}, |z| < 1$

3. Solution: take the real point z = R, then the sum becomes $\sum c_n R^n$. We are given that it converges, so its terms must tend to zero: $c_n R^n \to 0$ as $n \to +\infty$. The terms of a convergent sequence are bounded, so there exists an M such that $|c_n R^n| < M$ for all n. Equivalently, $|c_n| < M/R^n$ for all n.

- 4. $-2\pi i/3$.
- 5. $\pi i/2$.