1MA259 Differential Topology, Spring 2017 Exercises to Lectures 16-18 Dmitry Tonkonog

1. Show that the antipodal map $S^n \to S^n$ preserves orientation if and only if n is odd. Conclude that the (integral) degree of the antipodal map equals $(-1)^{n-1}$.

2. Construct a homotopy between the antipodal map $f: S^{2n-1} \to S^{2n-1}$ and the identity map.

3. Prove that the Mobius band embedded in \mathbb{R}^3 cannot be contained in a regular level set of some function $f: \mathbb{R}^3 \to \mathbb{R}$.

4. Suppose X a manifold which is not orientable. Prove that $X \times Y$ is not orientable, for any Y.

5. Let f(z) = 1/z on the circle of radius r in \mathbb{C} . Compute $\deg(f/|f|)$. Why does our proof of the Fundamental Theorem of Algebra not imply that 1/z has a root in \mathbb{C} ?

6. Prove that every map $S^1 \to S^1$ is homotopic to the map $z \mapsto z^k$, |z| = 1, for some $k \in \mathbb{Z}$.

7. Explain why the definition of Euler characteristic via the self-intersection number of the diagonal actually works for non-orientable manifolds, as well. (See Guillemin-Pollock, p.118-119 for details.)

8. Prove that $\chi(X \times Y) = \chi(X) \cdot \chi(Y)$.