1. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by the formula:

$$
\begin{cases}e^{-1 /\left(1-|x|^{2}\right)}, & |x|<1 \\ 0, & |x| \geq 1\end{cases}
$$

Here $x \in \mathbb{R}^{n}$ and $|x|$ is the norm. Check that f is smooth.
2. Let $K \subset \mathbb{R}^{n}$ be a compact set. Prove that there is a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f^{-1}(0)=K$. Deduce that there is an n-dimensional manifold $X \subset \mathbb{R}^{n+1}$ such that $X \cap\left(\mathbb{R}^{n} \times\{0\}\right)=K$.
3. Let $X, Z \subset Y$ be transverse submanifolds, and $x \in X \cap Z$. Prove that $T_{x}(X \cap Z)=T_{x} X \cap T_{x} Z$.
4. Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be smooth maps, and g is transversal to a submanifold $W \subset Z$. Show that f is transversal to $g^{-1}(W)$ if and only if $g \circ f$ is transversal to W.
5. Let $f: X \rightarrow X$ be a smooth map, and let $\operatorname{dim} X=n$. Consider the following n-dimensional submanifolds of $X \times X$, called the diagonal and the graph of f respectively:

$$
\begin{aligned}
& \Delta=\{(x, x) \in X \times X: x \in X\} \\
& \Gamma_{f}=\{(x, f(x)) \in X \times X: x \in X\}
\end{aligned}
$$

Verify that the intersections $\Delta \cap \Gamma_{f}$ are in bijection with the fixed points of f, i.e. points $x \in X$ such that $f(x)=x$.

We say that $f: X \rightarrow X$ is a Lefschetz map if for any fixed point $x \in X$ of f, the differential $d f_{x}: T_{x} X \rightarrow T_{x} X$ does not have +1 among its eigenvalues. Prove that Δ intersects Γ_{f} transversally if and only if f is a Leschetz map.
6. Suppose $f: X \rightarrow X$ is a Lefschetz map, and X is compact. Prove that f has finitely many fixed points.
7. Prove that the complement to a measure zero set is dense.
8. Prove that the set of rational numbers $\mathbb{Q} \subset \mathbb{R}$ has measure 0 .
9. Analyse the critical behaviour of the following functions at the origin. Is the critical point nondegenerate? Is it isolated? Is it a local maximum or minimum?

$$
\begin{aligned}
& f(x, y)=x^{2}+4 y^{3} \\
& f(x, y)=x^{2}-2 x y+y^{2} \\
& f(x, y)=x^{2}+y^{4} \\
& f(x, y)=x^{2}+11 x y+y^{2} / 2+x^{6} \\
& f(x, y)=10 x y+y^{2}+75 y^{3}
\end{aligned}
$$

10*. Let X be a compact manifold. Prove that there exist Morse functions on X which take distinct values at distinct critical points. Hint: start with some Morse function, and let $x_{i} \in X$ be its critical points. Let $\rho_{i}: X \rightarrow \mathbb{R}$ be smooth functions supported in some neighbourhoods U_{i} of x_{i}, such that $U_{i} \cap U_{j}=\emptyset$. (Here, f_{i} is supported in U_{i} means that $f_{i} \equiv 0$ away from U_{i}. Such functions can be constructed
by passing to a chart and using Problem 1.) Prove that $g=f+\sum a_{i} \rho_{i}$ has distinct critical values, where a_{i} are sufficiently small generically chosen constants.

