1. In the lectures we proved that the set

$$
X=\{0 \leq x \leq 1, y=0\} \cup\{x=0,0 \leq y \leq 1\} \subset \mathbb{R}^{2}(x, y)
$$

is not diffeomorphic to $Y=[-1,1] \subset \mathbb{R}$. Prove the same statement for the set

$$
X=\{0 \leq x \leq 1, y=0\} \cup\{x=-y, 0 \leq y \leq 1\} \subset \mathbb{R}^{2}(x, y) .
$$

2. Let

$$
X=\left\{\left(a_{1}, \ldots, a_{n}, 0, \ldots 0\right)\right\} \subset \mathbb{R}^{k}
$$

be the linear subspace $\mathbb{R}^{n} \subset \mathbb{R}^{k}$. Prove that a smooth function $f: X \rightarrow \mathbb{R}^{m}$ in the sense defined in the lectures is the same as a smooth function $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ in the usual sense.
3. Consider subsets $X \subset \mathbb{R}^{n}, Y \subset \mathbb{R}^{m}, Z \subset \mathbb{R}^{k}$, and let $f: X \rightarrow Y, g: Y \rightarrow \mathbb{Z}$ be smooth maps. Then the composition $g \circ f: X \rightarrow Z$ is smooth. If f, g are diffeomorphisms, so is $g \circ f$.
4. Let

$$
B(a)=\left\{x_{1}^{2}+\ldots+x_{k}^{2}<a\right\} \subset \mathbb{R}^{k}
$$

be the open ball of radius a. Check that the map

$$
f(x)=\frac{a x}{\sqrt{a^{2}-|x|^{2}}}, \quad x \in \mathbb{R}^{k}
$$

where $|x|^{2}=x_{1}^{2}+\ldots+x_{k}^{2}$, defines a diffeomorphism $f: B(a) \rightarrow \mathbb{R}^{k}$ onto the whole of \mathbb{R}^{k}.
5. Check that the map $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$, is not a diffeomorphism, although f is smooth and bijective.
6. Prove that the union of two complementary n-dimensional subspaces in $\mathbb{R}^{2 n}$,

$$
X=\left(\mathbb{R}^{n} \times\{0\}\right) \cup\left(\{0\} \times \mathbb{R}^{n}\right) \subset \mathbb{R}^{2 n},
$$

is not a manifold. (Hint: what happens if you remove the origin?)
8. Prove that the unit sphere in $S^{n} \subset \mathbb{R}^{n+1}$ is not diffeomorphic to \mathbb{R}^{n}. (Hint: \mathbb{R}^{n} is not compact.)
9. Prove that the map $f=(\sin u, \cos u), u \in(0,2 \pi)$, is a chart for $S^{1} \backslash\{1\} \subset \mathbb{R}^{2}$, where S^{1} is the unit circle. Define an analogous chart which would cover $\{1\} \in S^{1}$.
10. Let $S_{r}^{1} \subset \mathbb{R}^{3}$ be the circle of radius $r>1$ lying in the horizontal plane $\mathbb{R}^{2} \subset \mathbb{R}^{3}$, and let $X \subset \mathbb{R}^{3}$ be the set consisting of points at distance 1 from S_{r}^{1}. Prove that X is a manifold diffeomorphic to $S^{1} \times S^{1}$. Hint: show that X coincides with the set

$$
\{(r+\sin u) \cos v,(r+\sin u) \sin v, \cos u): u, v \in[0,2 \pi]\} .
$$

11. Consider the set $S O(2 ; \mathbb{R})$ of 2×2 orthogonal matrices as a subset of \mathbb{R}^{4}, by taking the matrix coefficients. Write the down the equations defining this subset, $S O(2 ; \mathbb{R}) \subset \mathbb{R}^{4}$. Prove that $S O(2 ; \mathbb{R})$ is a manifold and is diffeomorphic to S^{1}.
12. Recall the stereographic projection $S^{n} \backslash\{$ top point $\} \rightarrow \mathbb{R}^{n}$ mentioned in the lectures. Write a formula for it, and check that it is a diffeomorphism. See Exercise 12 from [Guillemin-Pollack, Lecture 1] or the lecture notes for a picture.

13*. The product $S^{2} \times S^{2}$ is a manifold which lies in $\mathbb{R}^{3} \times \mathbb{R}^{3}=\mathbb{R}^{6}$. Prove that there is a manifold $X \subset \mathbb{R}^{5}$ which is diffeomorphic to $S^{2} \times S^{2}$.

