Problem 1, 3 points.

(a). Let X^{n} be a manifold such that $T X$ is trivial: that is, $T X \cong X \times \mathbb{R}^{n}$. Prove that $\chi(X)=0$. Conclude that $T S^{2}$ is non-trivial.
(b). Show that $T S^{2} \times \mathbb{R}$ is diffeomophic to $S^{2} \times \mathbb{R}^{3}$.

Problem 2, 3 points. Let X be a manifold. We define the unit tangent bundle of X as the submanifold in the tangent bundle

$$
T X=\left\{(x, v): x \in X, v \in T_{x} X\right\}
$$

given by the equation $\|v\|=1$, where $\|\cdot\|$ is the Euclidean norm. Prove that the unit tangent bundle of S^{2} is diffeomorphic to $S O(3)$.
Note: please include an explanation why the maps you construct are smooth and not just continuous.

Problem 3, 3 points. Consider smooth maps between closed oriented manifolds of the same dimension: $X \xrightarrow{f} Y \xrightarrow{g} Z$. Prove that

$$
\operatorname{deg}(g \circ f)=\operatorname{deg} f \cdot \operatorname{deg} g \in \mathbb{Z}
$$

Problem 4, 5 points. Consider disjoint closed manifolds $M^{m}, N^{n} \subset \mathbb{R}^{k+1}$; assume that $m+n=k$ and M, N are oriented. Let

$$
\lambda: M \times N \rightarrow S^{k}
$$

be the linking map from Homework Assignment 2. Assume that an orientation on S^{k} has been fixed, we define the (integral-valued) linking number:

$$
l(M, N)=\operatorname{deg} \lambda \in \mathbb{Z}
$$

Note: the difference from Homework Assignment 2 is that now $l(M, N) \in \mathbb{Z}$ rather than $l(M, N) \in\{0,1\}$.
As a slight modification of this definition, suppose M, N are submanifolds of the unit sphere S^{k+1}. Again, assume that $m+n=k$, and M, N are oriented. One defines the linking number $l(M, N) \in \mathbb{Z}$ as follows. Pick a point $p \in S^{k+1}$ away from M and N. Consider any diffeomorphism (for example, the stereographic projection)

$$
h: S^{k+1} \backslash\{p\} \rightarrow \mathbb{R}^{k+1} .
$$

Then put

$$
l(M, N)=l(h(M), h(N)) \in \mathbb{Z}
$$

where the linking number in the right hand side has been defined above. Let us take it for granted that $l(M, N)$ does not depend on the choice of p and the diffeomorphism h.
Now let $f: S^{2 p-1} \rightarrow S^{p}$ be a smooth map, and $y, z \in S^{p}$ be regular values for f. By the preimage theorem for submersions, $f^{-1}(y), f^{-1}(z)$ are $(p-1)$-dimensional submanifolds of $S^{2 p-1}$. Therefore the linking number $l\left(f^{-1}(y), f^{-1}(z)\right) \in \mathbb{Z}$ is defined.
(a). Prove that for any other regular value y^{\prime} sufficiently close to y,

$$
l\left(f^{-1}\left(y^{\prime}\right), f^{-1}(z)\right)=l\left(f^{-1}(y), f^{-1}(z)\right) .
$$

Hint: the results from Lecture 20 will be helpful.
(b). Let $g: S^{2 p-1} \rightarrow S^{p}$ be another smooth map. Suppose $y, z \in S^{p}$ are regular values for both f and g, and that for all $x \in S^{p}$ we have:

$$
\|f(x)-g(x)\|<\|y-z\|,
$$

where the norm is computed in $\mathbb{R}^{p+1} \supset S^{p}$. Prove that

$$
l\left(f^{-1}(y), f^{-1}(z)\right)=l\left(g^{-1}(y), f^{-1}(z)\right)=l\left(g^{-1}(y), g^{-1}(z)\right) .
$$

(c). Prove that $l\left(f^{-1}(y), f^{-1}(z)\right)$ does not depend on the choice of y, z (as long as they are regular values), and does not change if we replace f by a homotopic map.
The invariant $l\left(f^{-1}(y), f^{-1}(z)\right)$ thus defined is called the Hopf invariant $h(f) \in \mathbb{Z}$.
Problem 5, 3 points. The Hopf fibration $\pi: S^{3} \rightarrow S^{2}$ is defined by

$$
\pi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=h^{-1}\left(\frac{x_{1}+i x_{2}}{x_{3}+i x_{4}}\right)
$$

where $h: S^{2} \backslash\{p\} \rightarrow \mathbb{C}$ is the stereographic projection, and $S^{3}=\left\{x_{1}^{2}+\ldots+x_{4}^{2}\right\} \subset \mathbb{R}^{4}$. Prove that

$$
h(\pi)=1,
$$

where h is the Hopf invariant from Problem 4.
Problem 6, 4 points. Consider smooth maps $S^{2 p-1} \xrightarrow{f} S^{p} \xrightarrow{g} S^{p}$. Prove that

$$
h(g \circ f)=h(f) \cdot(\operatorname{deg} g)^{2},
$$

where h is the Hopf invariant from Problem 4.
Problem 7, 5 points. Let X be a manifold without boundary, and $f: X \rightarrow X$ a smooth map such that $f^{2}=f \circ f$ is the identity. Such a map is called an involution. Let $M \subset X$ be the fixed point set of f :

$$
M=\{x \in X: f(x)=x\} .
$$

Prove that each connected component of M is a submanifold of X.
Note: different connected components of M may have different dimensions.
Hint: assume $X=\mathbb{R}^{n}$ and $0 \in \mathbb{R}^{n}$ is a fixed point of f. Let $d f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the differential at the origin, and define $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
g(x)=x+\left(d f_{0}\right)\left(f^{-1}(x)\right) .
$$

Show that g is a local diffeomorphism near the origin; and that $g(f(x))=\left(d f_{0}\right)(g(x))$ so f becomes linear after the coordinate change given by g.

Problem 8, 4 points. Is there an involution on the 2-sphere with exactly 4 distinct fixed points?
Hint: using your solution to the previous problem or otherwise, show that such an involution is a Lefschetz map. What can you say about the signs of its fixed points?

[^0]
[^0]: Submitting your work. You can submit handwritten solutions to my postbox (labelled: "Dmitry Tonkonog") in the Department of Mathematics, Floor 4 of Angstrom Laboratory building, or send your solutions in pdf format to dmitry.tonkonog@math.uu.se.

