Copyright 2025 by Tom Schang - not to be reproduced without permission

Lecture 4: Control Flow and Loops

Math 98

. i = = = A
Math 98 Lecture 4: Control Flow and Loops

Copyright 2025 by Tom Schang - not to be reproduced without permission

Agenda

Relations (review)
Logical statements

)
)
@ Boolean expressions
@ if-else statements
» Exercises
@ for loops
» Exercises

@ while loops

» break
» Exercises

Math 98 Lecture 4: Control Flow and Loops 2/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

Relations (review)

The following statements will take value 0 (if false) or 1 (if true)
@ a < b: alessthan b
a > b: a greater than b
a <= b: a less than or equal to b

o
o

@ a >= b: a greater than or equal to b

@ a == b: aequal to b (note the doubled equals sign!)
°

a~= b: anot equal to b

Math 98 Lecture 4: Control Flow and Loops 3/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

(o) & Cﬁ)

\NA~

TR L

Logical Statements

@ not(a)

@ xor(a,b)

Math 98 Lecture 4: Control Flow and Loops 4 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

Boolean Expressions

A boolean expression is any expression involving relations or logical
statements:

((4 <= 100)|(—2 >[5))&(true] r\;false)]

A~ — w~ \W¢

Boolean expressions evaluate to 1 for true and O for false. Note that 0 and
1 are just numbers and are not in a separate class for logicals.

>> 5 + true
ans =
6

The order of operations is as follows:
negation

relations

and

0000

or
Math 98 Lecture 4: Control Flow and Loops 5/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

if-else Statements: General Structure

This construct is used where the decision to execute one or another set of
computations depends on the value of a boolean expression.
if this boolean expression is true

execute these commands
elseif this second expression 1is true instead

then execute these other commands
else

do this if those earlier conditions are false
end

Math 98 Lecture 4: Control Flow and Loops 6 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

if-else Statements: Example 1

Vhat does this return?
1D
(disp(‘first one!’)
elseif pi == 3.14
disp(‘seco

one!’)

isp(‘neither were true!’)

Math 98 Lecture 4: Control Flow and Loops 7/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

if-else Statements: Example 2

hat does this return?
1f T
disp(‘first one!’)
elgseif pi == 3.14 <
f disp(‘second one!’)
else

\Wrue 7))
end

Math 98 Lecture 4: Control Flow and Loops 8/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

if-else Statements: Example 3

What does this return?
if4 <3 F

disp(‘first one!’) .
elseif@i == 3.149 = pl==

disp(‘second one!’) \ZZ/\/
elseilf (;False)

{ disp(‘third one!’)

§

Math 98 Lecture 4: Control Flow and Loops

9/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

if-else Statements: Example 3(b)

What's wrong with this?
if4 < 3
disp(‘first one!’)
elseif pi == 3.14
disp(‘second one!’)
elseif (f/\’_fj
disp(‘third one!’)
end

Math 98 Lecture 4: Control Flow and Loops 10/ 26

Copyright 2025 by Tom Schang - not to be reproduced without permission

Exercise: comparison.m

Write a script that prompts the user for two numbers (call them x and y).
It should output The numbers are equal if x = y and The numbers
are not equal otherwise.

Math 98 Lecture 4: Control Flow and Loops 11/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

Exercise: quadroots.m

Write a script that prompts the user for three integers a, b, c. These are
the coefficients to the quadratic p(x) = ax? + bx 4 c. Display a message
saying whether the quadratic has 1) distinct real roots, 2) a repeated root,
or 3) complex roots.

Math 98 Lecture 4: Control Flow and Loops 12 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

for Loops: Motivation

Is n prime?
@ Try dividing n by 2,3,...
@ If no smaller number divides n, then n is prime

We need a way to run multiple tests, one after the other.
We also need the function mod (), which finds remainders after division:

>> mod(17,5)
ans =

2
>> mod(33,3)
ans =

0)

Math 98 Lecture 4: Control Flow and Loops 13 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

for Loops: Description

Used to repeat a set of commands a certain number of times

for countVariable = 1 : numberOfIterations
% do something here
% this part will run

% (number0OfIterations) times

end

Math 98 Lecture 4: Control Flow and Loops 14 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

for Loops: Example

Simple Ezample: \ Lo

>> for i = ¥4 [1,2 3 4] ~ =1
gli " 142 (w2) T3
en N/
ans = =2
3 . \ _y7
cE = J/ 1+ 2 <Q{—2) \am—b[
4 5
ans = (=% ¢
5 J/uz (3+42) T
ans = .
6 =1 <

&

Math 98 Lecture 4: Control Flow and Loops 15 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

Nested for Loops: Example

2.3y 347%

/) A

Here is a for loop within a for loop. This is called a nested loop.
for i = 1:{5’2&(_”/ \> /
for j = 1:3sme(M

i S = S+ MG

</
end
end / <
S =2
{d)
/ S
;<
7:2 7
S5

Math 98 Lecture 4: Control Flow and Loops

16 / 26

Copyright 2025 by Tom Schang - not to be reproduced without permission

Exercise: sumCubes.m

Write a prepy¥am sumCubes.m of the form
function S = sumCubes(v)

that takes a vector as input and returns the sum of the cubes of its
elements. For pedagogical purposes, do this by:

© Initializing a variable S = 0 to keep track of the sum

© Use a for loop

Do you know a much simpler way to do this?

Math 98 Lecture 4: Control Flow and Loops 17 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

Example: testPrime.m

Write a function of the form
function [isPrime,divisor] = testPrime(n)

that takes in an integer n and returns isPrime = true if n is prime and

false otherwise. It should return divisor = NaN if the integer is prime and
its smallest divisor otherwise.

(This should be obvious, but don't use the built in MATLAB function
isprime)

Math 98 Lecture 4: Control Flow and Loops 18 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

while Loops: Introduction

A statement to repeat a section of code until some condition is satisfied.

while [EXPRESSION is true]
/i repeat this part until
% (EXPRESSION) is false
% be sure to modify (EXPRESSION) in this loop

end

Math 98 Lecture 4: Control Flow and Loops 19 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

while Loops: Example

Here is a simple example.

while x<=3 fl'rwc

=0 e cﬁ\/
X = x+1; z,x"‘/J _LX

end

Math 98

Lecture 4: Control Flow and Loops 20/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

while Loops: Nontermination

A for loop does “stuff’ for a set number of times. A while loop does
“stuff’ until some condition is no longer satisfied. This may go on forever!

x = 0;
while x<=3

x = x-1;
end

Math 98 Lecture 4: Control Flow and Loops 21/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

while Loops: continue

In both for and while loops, continue skips to the next run of the loop.

for 1 = 0:3:30
if mod(i,2) ==
continue
end
fprintf(‘%d °, i);
end

It's often possible to avoid using continue by restructuring your code.
Can you do that with the code above?

Math 98 Lecture 4: Control Flow and Loops 22 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

while Loops: break

The command break terminates the loop.

while true
guess = input(‘What number am I thinking of? ’);
if guess ==
fprintf (‘Lucky guess \n’);
break
else
fprintf (‘WRONG’) ;
end
end

Can you rewrite this code so that it doesn't use break?

Math 98 Lecture 4: Control Flow and Loops 23/26

Copyright 2025 by Tom Schang - not to be reproduced without permission

while Loops: In Class Demo

Demonstration of while, continue, and break: manyFrogs.m

Math 98 Lecture 4: Control Flow and Loops 24 /26

Copyright 2025 by Tom Schang - not to be reproduced without permission

Exercise: bisection.m

Implement a MATLAB function bisection.m of the form

function p = bisection(f, a, b, tol)
%» f: function handle y = f(x)

%» a: Beginning of interval [a, bl
% b: End of interval [a, Db]

%» tol: user provided tolerggCe for interval width

% p: approximatiom ?

Math 98 Lecture 4: Control Flow and Loops 25 /26

Copyright 2025 by Tom Schang - not to be re@duced wijhout 5rmission

2
Exercise: newton.m

Implement a function newton.m of the form

function p = newton(f, df, pO, tol)

%» f£: function handle y = f(x)

%» df: function handle of derivative y’ = f’(x)

%» pO0: initial estimate of the root

% tol: user provided tolerance for accuracy of solution

% p: approximation to the root

Math 98 Lecture 4: Control Flow and Loops 26 /26

