
MATH 98 GSI: Michael Heinz Project

Instructions:

• Your submission will consist of six files (and nothing else):

– bisection.m

– newton.m

– findbracket.m

– newtonbisection.m

– results1.txt

– results2.txt

• Very Important: Create a single compressed (.zip) folder with these files. Name it
LastNameFirstNameProject, e.g. HeinzMichaelProject.zip

•

In this assignment, we will address two issues with the Bisection method and Newton’s
method:

• Finding an interval [a, b] for the Bisection method, with f(a) and f(b) having different
signs.

• Combining the excellent convergence properties of Newton’s method with the guaran-
teed root-finding (robustness) of the Bisection method.

1a (Bisection): Implement the Bisection Method for Root Finding.

function p = bisection(f, a, b, tol)

• p: approximation to the root

• f: function handle

• a: left endpoint of initial interval

• b: right endpoint of initial interval

• tol: absolute error tolerance for root

In particular, your code should return an error if f(a) and f(b) have the same sign, in which
case the intermediate value theorem does not guarantee bisection can successfully find a root.
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1b (Newton): Implement Newton’s Method for Root Finding

function p = newton(f, df, p0, tol)

• p: approximation to the root

• f: function handle

• df: function handle of derivative

• p0: initial guess

• tol: absolute error tolerance for root

2. Implement a MATLAB function findbracket with signature

function [a, b] = findbracket(f, x0)

which finds an interval [a, b] around x0 such that f(a)f(b) < 0 (i.e. f(a) and f(b) have
opposite signs) according to the following method:

1. Set a = b = x0 and dx = 0.001

2. Set a = a− dx. If f(a)f(b) < 0, terminate.

3. Set b = b + dx. If f(a)f(b) < 0, terminate.

4. Multiply dx by 2 and repeat from step 2.

3. Implement a MATLAB function newtonbisection with signature

function p = newtonbisection(f, df, a, b, tol)

combining Newton’s method and the Bisection method according to the following strategy:

1. Start with p = a

2. Attempt a Newton step p = p− f(p)

f ′(p)

3. If p is outside of [a, b], set p =
a + b

2

4. If f(p)f(b) < 0, set a = p, otherwise set b = p.

5. Terminate if |f(p)| < tol

6. Repeat from step 2.

This function will be like a combination of newton and bisection.



MATH 98 GSI: Michael Heinz Project

4. Run your function newtonbisection using f(x) = sin(x)− e−x on the interval [1.9, 30]:

f = @(x) sin(x) - exp(-x);

df = @(x) cos(x) + exp(-x);

x = newtonbisection(f, df, 1.9, 30, 1e-8)

Present the result in a table showing for each iteration the method used (Newton or Bisec-
tion), a, b, p, and f(p). Save this as results1.txt. You don’t need to do anything fancy or
write a function to get the requested data, just temporarily print/display some of the results
and format them in a text file.

Hint: To generate the table, it is easiest to print out the needed information (i.e. the method
used, a, b, p, and f(p)) each iteration inside the function newtonbisection using fprintf

or disp. You can then comment out these print statements in part 5.

5. Use your combined findbracket and newtonbisection to solve for the roots of f(x) =
sin(x)− e−x with x0 = −3,−2,−1, ...., 9, 10:

f = @(x) sin(x) - exp(-x);

df = @(x) cos(x) + exp(-x);

for x0 = -3:10

[a, b] = findbracket(f, x0);

x = newtonbisection(f, df, a, b, 1e-8);

disp([x0, a, b, x])

end

Present your results in a table showing x0, a, b, and x. Save this as results2.txt.

Note: If you added some sort of print statement to your newtonbisection function for part
4, you probably want to comment them out for part 5.


