
Lecture 2: Functions

Math 98, Fall 2023

Math 98, Fall 2023 Lecture 2: Functions 1 / 24

Agenda

Functions

Exercises

Anonymous Functions

Functions vs. Scripts

Local Functions

nargin/return

Nested Functions

Math 98, Fall 2023 Lecture 2: Functions 2 / 24

Functions: Motivation

We have functions in addition to scripts because functions are
1 reusable

I A function replaces a repeated block of code.

2 simplifying
I A function organizes groups of code, and can be written in a separate

file. Makes the code easier to read.

3 changeable
I Easier to change a procedure if it’s packaged by a single function.

4 modular
I Reduce presence of intermediate variables

Math 98, Fall 2023 Lecture 2: Functions 3 / 24

Functions: Structure

Any function we write should have the following format:

%%%Name.m%%%

function [output vars] = Name(input)

% code here

end

The name of the function should match the name of the M-file. Built-in
Matlab functions use all lowercase letters, so use at least one uppercase
letter to avoid conflict.

Math 98, Fall 2023 Lecture 2: Functions 4 / 24

Functions: Example

Sample function:

function [n] = myfun(m)

n = m + 1;

end

Using the function:

>> myfun(5)

ans =

6

>> n = myfun(9)

n =

10

>> blah = myfun(pi)

blah =

4.1416

Math 98, Fall 2023 Lecture 2: Functions 5 / 24

Functions: Forgetting to assign output

Sample function:

function [n] = myfun(m)

m + 1;

end

Using the function:

>> myfun(10)

>>

Nothing happens!! No output was assigned.

Math 98, Fall 2023 Lecture 2: Functions 6 / 24

Functions: Intermediate Variables

Sample function:

function [n] = myfun(m)

a = m + 1;

b = 2*a;

n = b - 2;

end

Using the function:

>> n = myfun(4)

n =

8

The ‘outside world‘ knows nothing about the a and b that were created.
What happens in the function stays in the function.....

Math 98, Fall 2023 Lecture 2: Functions 7 / 24

Exercise: myfun.m

Write a function of the form

function [sum, diff, prod] = myfun(a, b)

that takes in two numbers a, b and returns their sum, difference, and
product. Run each of the following lines and understand the result.

>> myfun(3, 4)

>> sum = myfun(3, 4)

>> prod = myfun(3, 4)

>> sum = myfun(3)

>> price = 5; units = 4; [~, ~, rev] = myfun(price, units)

Math 98, Fall 2023 Lecture 2: Functions 8 / 24

Exercise: sumrowcols.m

Write a function of the form

function [colsum, rowsum] = sumrowcols(A)

that takes in a matrix m × n matrix A and returns vectors colsum and
rowsum of the column sums and row sums of A, respectively.

Math 98, Fall 2023 Lecture 2: Functions 9 / 24

Exercise: checkerboard.m

Write a function of the form

function A = checkerboard(n, m)

that takes two positive integers n and m as inputs and returns a matrix A

such that every element of the n ×m output matrix for which the sum of
its indices is even is 1. All other entries are zero.

Here is a sample output.

>> checkerboard(4, 5)

ans =

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

Math 98, Fall 2023 Lecture 2: Functions 10 / 24

Function Handles

A function handle is a Matlab variable that allows us to reference
functions indirectly. Use them to include functions as inputs to or outputs
from other functions.

>> integral(cos,0,1)

Error using cos

Not enough input arguments.

>> integral(@cos,0,1)

ans =

0.8415

Math 98, Fall 2023 Lecture 2: Functions 11 / 24

Anonymous Functions

A way to define functions in the middle of a Matlab script or in the
command line. Takes the form functionName = @(inputs)(output),
and returns the function handle functionName.

>> f = @(x,y)(x^2-y);

>> f(10, 3)

ans =

97

>> fzero(@(x)(x^2-2), 1.5)

ans =

1.4142

Useful when defining functions with simple expressions.

Math 98, Fall 2023 Lecture 2: Functions 12 / 24

Anonymous Functions: Examples

Here are some more functions:

>> b = 3; c = 5;

>> f1 = @(x)(x^3 + b*x + c);

>> fzero(f1,0)

ans =

-1.1542

>> b = 2; c = -1;

>> f2 = @(x)(x^3 + b*x + c);

>> fzero(f2, 0)

ans =

0.4534

Question: does changing the values of b and c change the function f1, or
will f1 and f2 be different functions?

Math 98, Fall 2023 Lecture 2: Functions 13 / 24

Functions vs. Scripts

Scripts:

No inputs or outputs - Matlab just executes all commands
I (Unless you use input)

Operates on existing data in the workspace

Variables created remain in the workspace

Functions:

Accept inputs and return outputs

Create their own separate workspace

Only requrested output variables get saved

Math 98, Fall 2023 Lecture 2: Functions 14 / 24

Functions vs. Scripts: Accesing Variables in Workspace

Functions do not access variables stored in the main Workspace.

%%%exampleFunction.m%%%

function w = exampleFunction(x,y)

w = x + y + z;

end

>> z = 5; a = exampleFunction(2,3);

Undefined function or variable ‘z’.

Math 98, Fall 2023 Lecture 2: Functions 15 / 24

Functions vs. Scripts: Saving Variables in Workspace

Functions do not save variables back to the main Workspace unless they
are requested as outputs.

%%%exampleFunction.m%%%

function a = exampleFunction(x,y)

a = x + y; b = 101;

end

>> a = exampleFunction(2,3); disp(a);

5

>> disp(b)

Undefined function or variable ‘b’.

Math 98, Fall 2023 Lecture 2: Functions 16 / 24

Functions vs. Scripts: Conflicting Variables

Because functions use their own workspace, variables named inside a
function cannot conflict with variables of the same name outside the
function.

%%%exampleFunction.m%%%

function a = exampleFunction(x,y)

b = 100; a = x + y + b;

end

>> b = -300; a = exampleFunction(40,5); disp(a);

145

>> disp(b);

-300

Math 98, Fall 2023 Lecture 2: Functions 17 / 24

Local Functions

We can define more than one function in a single file.

%%%myStats.m%%%

function avg = myStats(x)

% takes a vector and returns the average

n = length(x);

avg = myMean(x,n);

end

function m = myMean(v,n)

% it takes a vector and its length, returns the mean

m = sum(v)/n;

end

Only the first function (the main function) can be called form other
programs or the command line.

Math 98, Fall 2023 Lecture 2: Functions 18 / 24

Local Functions: In Scripts

We can also define local functions in scripts:

v = 1.5;

L = myLength(v);

fprintf(‘the length of v is %f \n’, L);

function len = myLength(x)

len = sqrt(sum(x.^2));

end

Any function definitions must come at the end of the script.

Math 98, Fall 2023 Lecture 2: Functions 19 / 24

Commenting

As with built-in Matlab functions, we can use comments and help to
inform how each function is properly used.

>> help myStats

takes a vector and returns the average

>> help myStats>myMean

it takes a vector and its length, returns the mean

Any function definitions must come at the end of the script.

Math 98, Fall 2023 Lecture 2: Functions 20 / 24

nargin/return
When used in the code for a function, nargin is the number of inputs
specified by the user. Handy when setting default values for inputs.

%%%addMe.m%%%

%Input: one or two floating point numbers

%Output: addMe(x,y) returns x + y; addMe(x) returns 2*x

function s = addMe(x,y)

if (nargin == 1)

s = x + x;

elseif (nargin == 2)

s = x + y;

else

fprintf(‘Read the comments! \n’);

return

end

end

return automatically halts the function.
Math 98, Fall 2023 Lecture 2: Functions 21 / 24

Exercise: myCosine.m

Write a function myCosine(theta,units) that returns the cosine of an
angle. If the second parameter is ‘deg’, convert the angle to radians with a
local function DegToRadians(x) before using Matlab’s cos. In all other
cases (including no second parameter), assume the angle is in radians.

>> myCosine(180, ‘deg’)

ans =

-1

>> myCosine(pi, ‘rad’)

ans =

-1

>> myCosine(pi)

ans =

-1

Math 98, Fall 2023 Lecture 2: Functions 22 / 24

Problem

We would like to find the roots of the polynomial

p(x) = x3 + bx + c

for various numbers b, c ∈ R.

How can we produce this family of functions?

What tools does Matlab have to solve this problem?

Math 98, Fall 2023 Lecture 2: Functions 23 / 24

Nested Functions

Nested functions are functions defined within other functions.

function f = makeCubic(b,c)

function y = myCubic(x)

y = x.^3 + b*x + c;

end

f = @myCubic;

end

They can access variables in the workspace of the parent function, and
don’t need to be defined at the end of the code in the parent function.

Math 98, Fall 2023 Lecture 2: Functions 24 / 24

