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Functions: Motivation

We have functions in addition to scripts because functions are
1 reusable

I A function replaces a repeated block of code.

2 simplifying
I A function organizes groups of code, and can be written in a separate

file. Makes the code easier to read.

3 changeable
I Easier to change a procedure if it’s packaged by a single function.

4 modular
I Reduce presence of intermediate variables
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Functions: Structure

Any function we write should have the following format:

%%%Name.m%%%

function [output vars] = Name(input)

% code here

end

The name of the function should match the name of the M-file. Built-in
Matlab functions use all lowercase letters, so use at least one uppercase
letter to avoid conflict.

Math 98, Fall 2023 Lecture 2: Functions 4 / 24



Functions: Example

Sample function:

function [n] = myfun(m)

n = m + 1;

end

Using the function:

>> myfun(5)

ans =

6

>> n = myfun(9)

n =

10

>> blah = myfun(pi)

blah =

4.1416
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Functions: Forgetting to assign output

Sample function:

function [n] = myfun(m)

m + 1;

end

Using the function:

>> myfun(10)

>>

Nothing happens!! No output was assigned.
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Functions: Intermediate Variables

Sample function:

function [n] = myfun(m)

a = m + 1;

b = 2*a;

n = b - 2;

end

Using the function:

>> n = myfun(4)

n =

8

The ‘outside world‘ knows nothing about the a and b that were created.
What happens in the function stays in the function.....
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Exercise: myfun.m

Write a function of the form

function [sum, diff, prod] = myfun(a, b)

that takes in two numbers a, b and returns their sum, difference, and
product. Run each of the following lines and understand the result.

>> myfun(3, 4)

>> sum = myfun(3, 4)

>> prod = myfun(3, 4)

>> sum = myfun(3)

>> price = 5; units = 4; [~, ~, rev] = myfun(price, units)
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Exercise: sumrowcols.m

Write a function of the form

function [colsum, rowsum] = sumrowcols(A)

that takes in a matrix m × n matrix A and returns vectors colsum and
rowsum of the column sums and row sums of A, respectively.

Math 98, Fall 2023 Lecture 2: Functions 9 / 24



Exercise: checkerboard.m

Write a function of the form

function A = checkerboard(n, m)

that takes two positive integers n and m as inputs and returns a matrix A

such that every element of the n ×m output matrix for which the sum of
its indices is even is 1. All other entries are zero.

Here is a sample output.

>> checkerboard(4, 5)

ans =

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0
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Function Handles

A function handle is a Matlab variable that allows us to reference
functions indirectly. Use them to include functions as inputs to or outputs
from other functions.

>> integral(cos,0,1)

Error using cos

Not enough input arguments.

>> integral(@cos,0,1)

ans =

0.8415

Math 98, Fall 2023 Lecture 2: Functions 11 / 24



Anonymous Functions

A way to define functions in the middle of a Matlab script or in the
command line. Takes the form functionName = @(inputs)(output),
and returns the function handle functionName.

>> f = @(x,y)(x^2-y);

>> f(10, 3)

ans =

97

>> fzero(@(x)(x^2-2), 1.5)

ans =

1.4142

Useful when defining functions with simple expressions.
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Anonymous Functions: Examples

Here are some more functions:

>> b = 3; c = 5;

>> f1 = @(x)(x^3 + b*x + c);

>> fzero(f1,0)

ans =

-1.1542

>> b = 2; c = -1;

>> f2 = @(x)(x^3 + b*x + c);

>> fzero(f2, 0)

ans =

0.4534

Question: does changing the values of b and c change the function f1, or
will f1 and f2 be different functions?
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Functions vs. Scripts

Scripts:

No inputs or outputs - Matlab just executes all commands
I (Unless you use input)

Operates on existing data in the workspace

Variables created remain in the workspace

Functions:

Accept inputs and return outputs

Create their own separate workspace

Only requrested output variables get saved
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Functions vs. Scripts: Accesing Variables in Workspace

Functions do not access variables stored in the main Workspace.

%%%exampleFunction.m%%%

function w = exampleFunction(x,y)

w = x + y + z;

end

>> z = 5; a = exampleFunction(2,3);

Undefined function or variable ‘z’.
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Functions vs. Scripts: Saving Variables in Workspace

Functions do not save variables back to the main Workspace unless they
are requested as outputs.

%%%exampleFunction.m%%%

function a = exampleFunction(x,y)

a = x + y; b = 101;

end

>> a = exampleFunction(2,3); disp(a);

5

>> disp(b)

Undefined function or variable ‘b’.
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Functions vs. Scripts: Conflicting Variables

Because functions use their own workspace, variables named inside a
function cannot conflict with variables of the same name outside the
function.

%%%exampleFunction.m%%%

function a = exampleFunction(x,y)

b = 100; a = x + y + b;

end

>> b = -300; a = exampleFunction(40,5); disp(a);

145

>> disp(b);

-300
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Local Functions

We can define more than one function in a single file.

%%%myStats.m%%%

function avg = myStats(x)

% takes a vector and returns the average

n = length(x);

avg = myMean(x,n);

end

function m = myMean(v,n)

% it takes a vector and its length, returns the mean

m = sum(v)/n;

end

Only the first function (the main function) can be called form other
programs or the command line.
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Local Functions: In Scripts

We can also define local functions in scripts:

v = 1.5;

L = myLength(v);

fprintf(‘the length of v is %f \n’, L);

function len = myLength(x)

len = sqrt(sum(x.^2));

end

Any function definitions must come at the end of the script.
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Commenting

As with built-in Matlab functions, we can use comments and help to
inform how each function is properly used.

>> help myStats

takes a vector and returns the average

>> help myStats>myMean

it takes a vector and its length, returns the mean

Any function definitions must come at the end of the script.
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nargin/return
When used in the code for a function, nargin is the number of inputs
specified by the user. Handy when setting default values for inputs.

%%%addMe.m%%%

%Input: one or two floating point numbers

%Output: addMe(x,y) returns x + y; addMe(x) returns 2*x

function s = addMe(x,y)

if (nargin == 1)

s = x + x;

elseif (nargin == 2)

s = x + y;

else

fprintf(‘Read the comments! \n’);

return

end

end

return automatically halts the function.
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Exercise: myCosine.m

Write a function myCosine(theta,units) that returns the cosine of an
angle. If the second parameter is ‘deg’, convert the angle to radians with a
local function DegToRadians(x) before using Matlab’s cos. In all other
cases (including no second parameter), assume the angle is in radians.

>> myCosine(180, ‘deg’)

ans =

-1

>> myCosine(pi, ‘rad’)

ans =

-1

>> myCosine(pi)

ans =

-1
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Problem

We would like to find the roots of the polynomial

p(x) = x3 + bx + c

for various numbers b, c ∈ R.

How can we produce this family of functions?

What tools does Matlab have to solve this problem?
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Nested Functions

Nested functions are functions defined within other functions.

function f = makeCubic(b,c)

function y = myCubic(x)

y = x.^3 + b*x + c;

end

f = @myCubic;

end

They can access variables in the workspace of the parent function, and
don’t need to be defined at the end of the code in the parent function.
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