
Math 54 LEC 002, Spring 2023

Bank of True - False Questions

Sections 1.1-1.9.

1) T-F Every transformation from Rn to Rm is linear.

2) T-F A linear transformation maps the origin to itself. In other words, if T is
linear then T (0) = 0.

3) T-F The composition of two linear transformations is linear. In other words if
T1 and T2 are linear transformations then T1◦T2 is a linear transformation
where T1 ◦ T2(x) = T1(T2(x)).

4) T-F If A is a 3× 2 matrix then the transformation x 7→ Ax is one to one.

5) T-F If A is a 3× 2 matrix then the transformation x 7→ Ax is onto.

6) T-F The columns of the standard matrix for a linear transformation from Rn

to Rm are the images of the columns of the n× n identity matrix.

7) T-F Consider a linear transformation T . Then T is one to one if and only
if the column vectors of its standard matrix are linearly independent.
(They are linearly independent if and only if the span of the column
vectors of A is n dimensional.)

8) T-F Consider a linear transformation T such that its standard matrix A is
an m × n matrix. (This means T : Rn → Rm). T is onto if and only if
the span of the column vectors of A is m dimensional.

1) False. Consider T (x) : R → R where T (x) = x2.

2) True.
T (0) = T (x− x) = T (x)− T (x) = 0

3) True. Let’s say the standard matrix of T1 is A1 and the standard matrix
of T2 is A2 then the composition T1 ◦T2 is given by left multiplication by
A1A2 because T1 ◦ T2(x) = T1(T2(x)) = T1(A2(x)) = A1A2x. Transfor-
mations given by matrix multiplication are linear by definition of matrix
multiplication.

4) False. It can be one to one. For instance if A =

1 0
0 1
0 0

 then it is, but it
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doesn’t have to be. If A =

 1 0
2 0

−7.3 0

 then it is not because if x =

[
1
0

]

and x′ =

[
1
1

]
then Ax = Ax′ =

 1
2

−7.3

.
5) False. It cannot be onto because the domain is R2 which is 2 dimensional

so the image is at most 2 dimensional. However the target set R3 is three
dimensional.

6) True. See Theorem 10 pg. 76.

7) True. We can write the standard matrix as A = [c1, . . . , cn] where ci is
the i th column. Then T is one to one if and only if Av = Av′ implies
v = v′. But Av = Av′ is equivalent to A(v − v′) = 0 (here the right

hand side is the 0 vector of length m). We can write v− v′ =

a1...
an

 then

A(v − v′) = 0 is equivalent to a1 · c1 + · · · + an · cn = 0 and v = v′ is
equivalent to saying a1 = · · · = an = 0. So saying T is one to one is
equivalent to saying if a1 · c1 + · · · + an · cn = 0 then a1 = · · · = an = 0
which by definition means {c1, . . . , cn} are linearly independent.

8) True. The image of T is the span of the columns of A so T is onto if
and only if the span of the columns of A is equal to Rm.
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Sections 2.1-2.3.

1) T-F If A and B are n× n matrices, then AB = BA.

2) T-F Suppose {v1,v2,v3} is a linearly dependent set of vectors in R6. Then
{v1,v2} is also a linearly dependent set.

3) T-F If A is a 2× 3 matrix then A is never onto.

4) T-F If A is an n× n square matrix and A⊤A = 2I, then A is invertible.

5) T-F If A and B are invertible n × n square matrices then (A + B)−1 =
A−1 +B−1.

1) False. For example, try A =

[
1 1
1 1

]
and B =

[
1 0
0 0

]
.

2) False. For example, take v1 =



1
0
0
0
0
0

 ,v2 =



0
1
0
0
0
0

 and v3 =



1
1
0
0
0
0

.

3) False. For example, the 2× 3 matrix

[
1 0 0
0 1 0

]
is onto.

4) True. The inverse of A is 1
2A

⊤. To verify this, we can observe that
1
2A

⊤A = 1
2(2I) = I and (to verify that it is also a right inverse, although

this is not necessary for square matrices) we can compute A(12A
⊤) =

1
2(AA

⊤) = 1
2(A

⊤A)⊤ = 1
2(2I)

⊤ = I.

5) False. In fact, A+B may not even be invertible! Try A = I and B = −I
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Sections 3.1-3.3.

1) T-F If A has determinant det(A) = 0, then two rows of A are multiples of
each other.

2) T-F If A is obtained by multiplying a row of B by 5, then det(A) = 5 det(B).

3) T-F If A is obtained by subtracting column 2 from column 1 in B, then
det(A) = − det(B).

4) T-F If AT has nonpositive determinant det(AT ) ≤ 0, then det(ATA) ≤ 0.

5) T-F If A is a 3× 3 matrix obtained by switching rows 2 and 3 of the identity
matrix I, then A has determinant det(A) = 1.

6) T-F If the rows of A are linearly dependent, then A has det(A) = 0.

7) T-F If the columns of A are linearly independent, then A has det(A) ̸= 0.

8) T-F If A has det(A) = a, and B has det(B) = b, then det(A+B) = a+ b.

9) T-F If A is a 4× 4 matrix, then det(−A) = det(A).

10) T-F If A is an n × n matrix and the columns of A sum to

10
0

, then A is

invertible.

11) T-F If A and B are n× n matrices, det(A+BT ) = det(A+B).

12) T-F If the linear transformation Rn → Rn defined by A is injective (one-to-
one), then A is surjective (onto).

13) T-F If det(A) = 1 and A′ is the adjugate matrix of A, then AA′ = I, where
I is the identity matrix.

1) False. Not necessarily. Take for example

2 4 6
1 3 4
2 2 4


2) True. If one row of A is multiplied by a scalar k to produce B, then

det(B) = k det(A).

3) False. If a multiple of one row of A is added to another row to produce
a matrix B, then det(B) = det(A).
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4) False. If det(AT ) ≤ 0, then det(A) ≤ 0, so det(ATA) = det(AT ) det(A) ≥
0.

5) False. If two rows of I are interchanged to produce A, then det(A) =
− det(I) = −1.

6) True. The matrix A is not invertible, and so has det(A) = 0.

7) True. The matrix A is invertible, so has det(A) ̸= 0.

8) False. The determinant of a matrix is not distributive over addition.

9) True: det(−A) = (−1)4 det(A).

10) False: Not necessarily, take A =

0 0 1
0 0 0
0 0 0

.
11) False: not necessarily.

12) If the linear transformation Rn → Rn defined by A is injective (one-to-
one), then A is surjective (onto).

13) If det(A) = 1 and A′ is the adjugate matrix of A, then AA′ = I, where
I is the identity matrix.
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Sections 4.1-4.6.

1) T-F The null space of an m× n matrix is in Rm.

2) T-F The column space of an m× n matrix is in Rm.

3) T-F If the equation Ax = b is inconsistent for some nonzero b, then Col(A) =
{0}.

4) T-F Let T : R3 → R3 be a linear transformation. If ker(T ) = {0}, then
range(T ) = R3.

5) T-F Let A be an n × n matrix, and suppose that Col(A) = Null(A). Then
Null(A2) = Rn.

6) T-F The set S = {1, x} is a basis for the vector space of polynomials of degree
≤ 2, P2.

7) T-F For A =

[
1 0
1 0

]
, the vector

[
0
1

]
is in null(A).

8) T-F For A =

[
1 0
1 0

]
, the vector

[
2
3

]
is in col(A).

9) T-F The set of invertible n× n matrices is a vector subspace of the set of all
n× n matrices, Matn(R).

10) T-F Let T be a linear transformation. Then if ker(T ) = 0, T is one-to-one.

11) T-F For any vectors v1,v2 in R5, Span(v1, v2) is a vector subspace of R5.

12) T-F For any n× n matrix A, col(A) and null(A) are vector subspaces of Rn.

1) False: the null space of an m× n matrix is in Rn.

2) True: the column space of an m× n matrix is in Rm.

3) False: not necessarily. If the equation Ax = b is inconsistent for some
nonzero b, then that means that Col(A) ̸= Rn. But there can still be a

nonzero element of the column space. For example, take A =

[
1 1
0 0

]
and

b =

[
1
1

]
.

4) True: If ker(T ) = {0}, then T is an invertible linear transformation (i.e.
represented by an invertible 3×3 matrix), and so it’s column space must
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span the whole of R3.

5) True: Let x be any vector. Then Ax ∈ Col(A), so Ax ∈ Null(A). But
this means that A(Ax) = 0, so A2(x) = 0. So x ∈ Null(A2). Since we
can do this for any vector x, it follows that Null(A2) = Rn.

6) False: for example, x2 cannot be written as a linear combination of 1
and x. Rather, the set {1, x, x2} is a basis for P2.

7) True: computation shows that Av = 0.

8) False: the vector v is not a scalar multiple of the first column of A.

9) False: Take for example I and −I. Both of these are in the set of
invertible matrices, however their sum is not: I + (−I) = 0.

10) True: Suppose that ker(T ) = 0. Suppose that there exist two vectors
x, y ∈ Rn such that T (x) = T (y). By linearity, this says that T (x) −
T (y) = T (x − y) = 0. Since ker(T ) = 0, this implies that x − y = 0, so
x = y. In other words, T is one-to-one.

11) True. The span of any set of vectors is by construction a vector subspace.

12) True. The column space and null space of a matrix is by construction
a vector subspace. In particular, if we have an n × n matrix, then the
column space and nullspace are both vector subspaces of Rn.
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Sections 5.1-5.5.

1) T-F If A is invertible, then A is diagonalizable.

2) T-F If A is diagonalizable, then there is a basis of Rn {v1, ...,vn}, where each
vi is an eigenvector of A.

3) T-F A is diagonalizable if A has n not necessarily distinct eigenvalues.

4) T-F If A can be diagonalized as A = PDP−1 for some diagonal matrix D
and invertible matrix P , then D is unique.

5) T-F If A can be diagonalized as A = PDP−1 for some diagonal matrix D
and invertible matrix P , then P is unique.

6) T-F If M is not diagonalizable then it has an eigenvalue of algebraic multi-
plicity ≥ 2.

7) T-F If M has an eigenvalue of algebraic multiplicity ≥ 2 then it is not diag-
onalizable.

8) T-F Every M has n eigenvalues (counting algebraic multiplicity).

9) T-F 0 is an eigenvalue of M if and only if M is not invertible.

10) T-F M is invertible if and only if 0 is not an eigenvalue of M .

11) T-F If 1 is an eigenvalue of M and of M ′ then 1 is an eigenvalue of M ·M ′.

12) T-F If M and M ′ are similar, then they have the same eigenvalues.

13) T-F M is invertible if and only if its eigenvectors span Rn.

14) T-F If M is invertible then it is diagonalizable.

15) T-F If M is diagonalizable then it is invertible.

1) False: take e.g.

[
1 1
0 1

]
.

2) True: If A is diagonalizable, then it has n linearly independent eigen-
vectors. But n linearly independent eigenvectors span Rn, and so form
a basis for Rn.

3) False: All matrices have n not necessarily distinct eigenvalues. The
example from two questions ago works as a counterexample here.
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4) False: While the matrix D is always given by the eigenvalues of A, the
order in which they appear on the diagonal is not unique.

5) False: While the matrix P is always given by the eigenvectors of A,
an eigenvector is only unique up to a choice of basis for the associated
eigenspace, which is not unique.

6) True: The only way to have a non-diagonalizable matrix is for the al-
gebraic multiplicty of an eigenvalue to be greater than its geometric
multiplicty. Since the geometric multiplicty is at least 1, this requires
the algebraic multiplicty to be ≥ 2

7) False. Take the identity matrix - it has an eigenvalue 1 with algebraic
multiplicity 2, but it is trivially diagonalizable.

8) True. Every n× n matrix has n eigenvalues, corresponding to the solu-
tions of the characteristic equation. Note that some of these eigenvalues
may be complex, but they will always appear in pairs as complex conju-
gates.

9) True. If a matrix has 0 as an eigenvalue, it has determinant 0.

10) True. This is a stronger statement than the previous one: a matrix has
determinant 0 if and only if 0 is an eigenvalue of the matrix. Remember
that the determinant of a matrix is always equal to the product of its
eigenvalues.

11) False. Take M =

[
1 0
0 0

]
, and M ′ =

[
0 0
0 1

]
. Both M and M ′ have 1

as an eigenvalue, but their product is MM ′ =

[
0 0
0 0

]
, which only has

eigenvalue 0.

12) True. Similar matrices always have the same eigenvalues.

13) False. Take for example the zero matrix as a counterexample.

14) False. Take the upper triangular matrix

[
1 1
0 1

]
as a counterexample.

15) False. Take for example the zero matrix as a counterexample.
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Sections 6.1-6.7.

1) T-F If u and v are both orthogonal to w, then they are orthogonal to each
other: u is orthogonal to v.

2) T-F For scalar c ∈ R and vector v ∈ Rn, ∥cv∥ = c∥v∥.

3) T-F If A is an matrix, with v = ATw, Au = 0, then u · v = 0.

4) T-F Given v ∈ Rn, v · v ≥ 0.

5) T-F Every linearly independent set in Rn is an orthogonal set.

6) T-F Every orthogonal set in Rn is linearly independent.

7) T-F Given a nonzero scalar c ∈ R, the orthogonal projection of y onto u is
the same as the orthogonal projection of y onto cu.

8) T-F If z is orthogonal to both u1 and u2, and W = Span {u1,u2}, then
z ∈ W⊥.

9) T-F If V = Span {v1,v2,v3}, and x = α1v1 + α2v2 + α3v3, then projV x = x.

10) T-F Suppose v1, v2, v3 ∈ Rn are linearly independent andW = span(v1, v2, v3).
Let (x1, x2, x3) be an orthogonal nonzero set in W . Then (x1, x2, x3) is a
basis for W .

11) T-F If x ∈ Rn is not in the subspace V , then x− projV x ̸= 0.

12) T-F The list of vectors

{[
1
0

]
,

[
0
1

]}
is the only orthonormal basis of R2.

13) T-F Let A be a m × n matrix with linearly independent columns. Apply
Gram-Schmidt on the column vectors of A and have these vectors be the
columns of another matrix B. Then ColA = ColB.

14) T-F If U is an n × p matrix with orthonormal columns, then UUTx = x for
all x ∈ Rn.
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15) T-F A least-squares solution of Ax = b is a vector x̂ such that ||b − Ax|| ≤
||b− Ax̂|| for all x ∈ Rn.

16) T-F For any two vectors v and w in an inner product space, ∥v + w∥ ≤
∥v∥+ ∥w∥ .

17) T-F For any two vectors v and w in an inner product space, the following
holds: |⟨v, w⟩| = ∥v∥∥w∥.

18) T-F Given a m × n matrix A and a vector b ∈ Rm, there is always a unique
least-squares solution x̂ ∈ Rn.

19) T-F Let W ⊆ V be a vector subspace of V . If v ∈ span(W ), then projW (v) =
v.

20) T-F Let W ⊆ V be a vector subspace of V . If projW (v) = v, then v ∈
span(W ).

21) T-F If {u,v} is orthogonal and {v,w} is orthogonal, then {u,v,w} is or-
thogonal.

22) T-F If ∥u+ v∥2 = ∥u∥2 + ∥v∥2, then u and v are orthogonal.

23) T-F dim(W ) = dim(W⊥).

24) T-F Let A be a set of nonzero vectors contained in some vector space V . Let
B be the outcome of performing Gram-Schmidt to A. Then span(B) =
span(A).

25) T-F Let A be an m× n matrix. The least squares solution of Ax = b is the
vector in Rm that is the shortest distance from b.

26) T-F If u,v are parallel vectors in (V, ⟨·, ·⟩), then ⟨u,v⟩ = ∥u∥ ∥v∥.

27) T-F Let V be a vector space, and let I1 and I2 be two inner products on V .
If u ⊥ v with respect to I1, then u ⊥ v with respect to I2.

28) T-F Given an m× n matrix A, the matrix equation ATAx = ATb is always
consistent.

29) T-F Every basis {v1,v2,v3} of R3 is orthogonal.

30) T-F For every n, the orthogonal complement of a line in Rn is also a line.
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31) T-F For any vectors u1,u2 such that W = Span{u1,u2} is a plane, the
orthogonal projection of any vector v onto W is given by projW (v) =
proju1

(v) + proju2
(v).

32) T-F For any set of three vectors {u1,u2,u3} the Gram-Schmidt algorithm
will produce three non-zero orthogonal vectors {v1,v2,v3}.

33) T-F For any 3 × 2 matrix A (3 rows, 2 cols) the equation Ax = b has a
unique least squares solution for any b in R3.

34) T-F The only inner product is the dot product.

1) False. For a counterexample, take u =

[
1
1

]
,v =

[
2
3

]
,w =

[
0
0

]
. Then

u ·w = v ·w = 0, but u · v = 5 ̸= 0.

2) False. Let c = −1,v =

[
3
4

]
. Then ∥cv∥ =

√
(−3)2 + (−4)2 = 5, but

∥v∥ =
√
32 + 42 = 5, so that c∥v∥ = −5 ̸= 5 = ∥ − cv∥.

3) True. The way that v was defined means that it is in the row space
of A, and u is in the null space of A. From the text we know that
(RowA)⊥ = NulA, so that u · v = 0.

4) True. v · v = ∥v∥2 ≥ 0.

5) False. For example, take the set

{[
1
0

]
,

[
1
1

]}
⊆ R2. This set is linearly

independent, but v1 · v2 = 1 ̸= 0.

6) False. Every orthogonal set in Rn containing only nonzero vectors is a
linearly independent set. However, there is no restriction requiring us to
not have 0 as a vector in our orthogonal set.

7) True. To see this, note that by definition

projuy =
u · y
u · u

u.

On the other hand,

projcuy =
cu · y
cu · cu

cu =
c2

c2
u · y
u · u

u =
u · y
u · u

u,

so that projuy = projcuy.
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8) True. For any w = c1u1+ c2u2 ∈ W , by linearity of the dot product we
have that z ·w = c1z · u1 + c2z · u2 = c1 × 0 + c2 × 0 = 0.

9) True. The vector x already lives in V , and so its projection is trivial.

10) True. Because (x1, x2, x3) is orthogonal and nonzero, the list is linearly
independent. Then it will be span W and be a basis for W .

11) True. Because x is not in V , then projV x ̸= x.

12) False. We can create an orthogonal basis of R2 by choosing any 2 linearly
independent vectors then applying Gram-Schmidt to orthogonalize, then
normalize the vectors.

Example:

v1 =

[
1/
√
2

1/
√
2

]
, v2 =

[
−1/

√
2

1/
√
2

]
13) True. Similar logic to part (a), consider ColA as the space spanned

by the columns of A, then applying Gram Schmidt to its columns will
provide an orthogonal basis for ColA. So the columns of B will also span
ColA.

14) False. If we let the columns of U be a basis forW , then UUTx = projWx.

15) False. the inequality should be reversed, because x̂ makes Ax̂ a better
approximation for b than Ax.

16) True. this is the triangle inequality. A proof is in the book.

17) False. The equality should be replaced with ≤, which is the Cauchy-
Schwarz inequality. A counterexample to the statement comes from tak-

ing v =

[
1
0

]
and w =

[
0
1

]
in R2.

18) False. This is only true if ATA is invertible (which is equivalent to
Nul(A) = 0), in which case the unique solution is

x̂ = (ATA)−1AT b.

A counterexample to the statement comes from taking A to be the zero
matrix and b to be the zero vector; then any x̂ ∈ Rn is a least squares
solution.
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19) True. The projection of any vector onto a subspace containing that
vector is trivial.

20) True. The orthogonal projection of v onto w is always a scalar multiple
of w, so by definition v ∈ span(w).

21) False. Take for example the set
 2

1
−1

 ,

 1
−2
0

 ,

10
2

 .

22) True. This is a restatement of Pythagoras’ theorem, and can be found
in the book.

23) False. In fact, for W ⊆ V , dim(W )+dim(W⊥) = n, where n = dim(V ).
So for example, any 1-dimensional subspace of R3 does the trick as a
counterexample!

24) True. Gram Schmidt changes the vectors in the set, but not their span.

25) False. The least squares solution x̂ is an approximation of a solution x,
not an approximation of b. In other words, it is a vector x̂ that minimises
the distance between Ax and b.

26) False. If u and v are parallel, then | ⟨u,v⟩ | = ∥u∥ ∥v∥, but the crucial

part of this is the absolute value. For example, take u =

[
−1
−1

]
and

v =

[
1
1

]
, then ⟨u,v⟩ = −2, but ∥u∥ ∥v∥ =

√
2
√
2 = 2. Obviously

−2 ̸= 2.

27) False. Orthogonality is not an intrinsic property of the underlying vec-
tor space, but very much so depends on the choice of inner product.

28) True. This is the foundational observation in the proof of the formula for
calculating least square solutions. If the equation Ax = b is consistent,
then this follows trivially. In the case that Ax = b is inconsistent, then
any least squares solution to the system Ax = b is a solution to the
system ATAx = ATb (the normal equations), and so it is consistent.

29) False. The vectors [1, 0, 0]T , [1, 1, 0]T and [1, 1, 1]T form a basis of R3

that is not orthogonal.
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30) False. The orthogonal complement of a line in Rn is only a line when
n = 2. When n = 3, for example, the orthogonal complement of a line
is a plane.

31) False. This only works when your vectors u1 and u2 are orthogonal.

32) False. You could start with one vector being 0, which would make one
of the vectors at the end of the Gram-Schmidt process 0.

33) False. False: Take for example the matrix

A =

1 2
0 0
0 0



Then the orthogonal projection of b =

b1b2
b3

 onto col(A) is the vector

b̂ =

b10
0

. The equation Ax̂ = b̂ is under determined since the columns

of A are parallel, so there are multiple possible least squares solutions. In
general, there are multiple least squares solutions whenever the columns
of A are linearly dependent.

34) False. There are tons of other inner products! For example, the inner
product

∫ 1

0 f(x)g(x) dx on C[0, 1] is an inner product that is certainly
not the dot product.
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Sections 7.1/5.7.

1) T-F If A is a 3× 3 diagonalizable matrix of rank 1, then the dimension of the
space of solutions to x′(t) = Ax(t) of the form x(t) = v where v ∈ R3 is
a constant vector is 2.

2) T-F Suppose A is a 2 × 2 matrix, b1, b2 ∈ R2 vectors spanning R2. If xi(t)
is a particular solution to x′(t) = Ax(t) + bi for i = 1, 2, then there are
nonzero constants such that c1x1(t)+c2x(t) is a solution to x′(t) = Ax(t).

3) T-F Let A be a square matrix. We always have that x′(t) = Ax(t) has a
solution.

1) True. The options for v are precisely the vectors in the null space of A,
which by the Rank-Nullity Theorem has dimension 2.

2) False. The difference of two solutions to the same inhomogenous equa-
tion is a solution to the corresponding homogenous equation, if the vec-
tors bi are linearly independent, such a linear combination does not nec-
essarily exist.

3) True. This is the existence theorem for systems of ordinary differen-
tial equations. Also, we can just take x(t) = 0 since the equation is
homogeneous.
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