Problem 1 (5 points). Let A be as follows.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

(a) Compute A^{-1} .

Solution: We can use row reduction.

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 1 & 1 & | & -1 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & -1 & 1 \end{bmatrix}$$

and now we can conclude that the inverse matrix is

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

(b) What vector $\vec{\mathbf{x}}$ solves the equation

$$A\vec{\mathbf{x}} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}?$$

Solution: We can simply compute

$$\vec{\mathbf{x}} = A^{-1} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ b-a \\ c-b \end{bmatrix}$$

Problem 2 (5 points). True or False? (No justification required)

- (i) If A and B are $n \times n$ matrices, then AB = BA. **False.** For example, try $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- (ii) Suppose $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$ is a linearly dependent set of vectors in \mathbb{R}^6 . Then $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2\}$ is also a linearly dependent set.

False. For example, take
$$\vec{\mathbf{v}}_1 = \begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix}$$
, $\vec{\mathbf{v}}_2 = \begin{bmatrix} 0\\1\\0\\0\\0\\0\\0 \end{bmatrix}$ and $\vec{\mathbf{v}}_3 = \begin{bmatrix} 1\\1\\0\\0\\0\\0\\0 \end{bmatrix}$.

- (iii) If A is a 2 × 3 matrix then A is never onto. **False.** For example, the 2 × 3 matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ is onto.
- (iv) If A is an $n \times n$ square matrix and $A^{\top}A = 2I$, then A is invertible. **.True.** The inverse of A is $\frac{1}{2}A^{\top}$. To verify this, we can observe that $\frac{1}{2}A^{\top}A = \frac{1}{2}(2I) = I$ and (to verify that it is also a right inverse, although this is not necessary for square matrices) we can compute $A(\frac{1}{2}A^{\top}) = \frac{1}{2}(AA^{\top}) = \frac{1}{2}(A^{\top}A)^{\top} = \frac{1}{2}(2I)^{\top} = I$.
- (v) If A and B are invertible $n \times n$ square matrices then $(A + B)^{-1} = A^{-1} + B^{-1}$. False. In fact, A + B may not even be invertible! Try A = I and B = -I

Problem 3 (5 points). Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$T\left(\begin{bmatrix}0\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}2x_2+x_3\\-x_3\end{bmatrix}$$
 and $T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\-2\end{bmatrix}$.

(a) What is the standard matrix representing T? Solution: We compute

$$T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\0\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\end{bmatrix}$$
$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right) - T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\-2\end{bmatrix} - \begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}1\\-1\end{bmatrix}$$

from which we can determine that the matrix representing ${\cal T}$ is

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & -1 \end{bmatrix}$$