- Tom Schang
- **Problem 1.** Let $f(x, y, z) = 4(x 1)^2 + 4(y + 2)^2 + z^2$ and let S be the surface given by f(x, y, z) = 4. Show that no tangent plane contains the point (1, -2, -1).
- **Problem 2.** (Srivastava) Let $f(x, y) = x^3/3 + y^3/3 + 5x y$. Find and classify the critical points of $g(x, y) = |\nabla f(x, y)|^2$.
- Problem 3. (Tataru)
 - (a) Let f(x, y) = g(r) where g is a twice-differentiable function and r is the radius in polar coordinates. Compute

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

in terms of x, y and g (and derivatives of g).

(b) Does
$$f(x,y) = \ln(x^2 + y^2)$$
 satisfy $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$?

Problem 4. (Hutchings) Calculate

$$\int_0^4 \int_{\sqrt{x}}^2 e^{y^3} \,\mathrm{d}y \,\mathrm{d}x.$$

- **Problem 5.** (Tataru) Find the volume of the solid bounded from above by the sphere $x^2 + y^2 + z^2 = 2$ and from below by the paraboloid $z = x^2 + y^2$.
- **Problem 6.** Compute the area of the weird ellipse $\frac{(x-y)^2}{4} + (x-2y)^2 \leq 1$.
- **Problem 7.** (Hutchings) Let S be a surface contained in the plane z = x + y. Let S have surface area 2023. Let $\mathbf{F} = \langle 3, 4, 5 \rangle$. Compute

$$\iint_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S}.$$

Problem 8. (Tataru) Consider the curve of intersection between the surface $x^2 + y^2 - z^2 = 1$ and the surface $y = x^2$. Let C be the part of that curve between (1, 1, -1) and (1, 1, 1). Let

$$\mathbf{F} = \left\langle \frac{1}{1+y+z}, \frac{-x}{(1+y+z)^2}, 2z + \frac{-x}{(1+y+z)^2} \right\rangle.$$

Compute

$$\int_L \mathbf{F} \cdot \, \mathrm{d}\mathbf{r}.$$

Problem 9. (Srivastava) Let $\mathbf{F} = \langle y^3 z, x^3 z, 1 + e^{x^2 + y^2} \rangle$. Let S be the part of the paraboloid $z = 1 - x^2 - y^2$ that lies above the xy-plane (with the upwards orientation). Use the divergence theorem and the filled-in piece of paraboloid (i.e. the region $z \ge 0$ and $z \le 1 - x^2 - y^2$) to compute

$$\iint_{S} \mathbf{F} \cdot \, \mathrm{d}\mathbf{S}$$

Problem 10. (Srivastava) Let S be the part of the paraboloid $z = 4 - x^2 - y^2$ in the first octant $(x \ge 0, y \ge 0, z \ge 0)$. Let C be the boundary curve of S (with counterclockwise orientation when viewed from above). Use Stokes' theorem to compute

$$\int_C \langle yz, -xz, 1 \rangle \cdot \, \mathrm{d}\mathbf{r}.$$

Problem 11. True/False.

- (a) (Srivastava) If f(x, y) is differentiable with $\frac{\partial f}{\partial x} = -1$ and $\frac{\partial f}{\partial y} = 2$, then there is a direction **u** such that $D_{\mathbf{u}}f = 0$.
- (b) (Srivastava) Consider the level curve of a differentiable function f(x, y) = k. If P is a point such that the level curve intersects itself non-tangentially, then P is a critical point of f.
- (c) (Srivastava) If curl(**F**) = ∇f , (where **F** is some vector field) then f solves $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$.
- (d) (Srivastava) If \mathbf{F} and \mathbf{G} are conservative vector fields, then $\mathbf{F} + \mathbf{G}$ is also a conservative vector field.
- (e) (Textbook) If \mathbf{F} and \mathbf{G} are a vector fields and div $\mathbf{F} = \operatorname{div} \mathbf{G}$ then $\mathbf{F} = \mathbf{G}$.
- (f) Let S be a surface defined as the level set f(x, y, z) = k of a differentiable function f. Let $\gamma(t)$ be a curve in S. Then $\gamma'(0)$ and $\nabla f(\gamma(0))$ are parallel.