1 Basic Skills

- I. Parametrize a 2-d surface, or possibly parametrize only a part of a 2-d surface.
- II. Find tangent planes of parametrized 2-d surfaces.
- III. Compute surface areas.
- IV. Know the terms surface integral, flux, orientation, oriented/orientation, normal.

2 Problems Types

- I. Set up and compute integrals of functions over 2-d surfaces.
- II. Set up and compute the flux of a vector field across a surface.

3 Practice

Problem 0 (Warm-up). Parametrize the following

- (a) The unit circle centered at the origin.
- (b) The circle of radius 2 centered at $(0, 4)$.
- (c) The ellipse centered at the origin with foci on the x-axis, and x-intercepts at ± 2 , and y-intercepts at ± 1 .
- (d) The top half of the hyperboloid $y^2 = 1 + x^2$.

Problem 1. Parametrize the following

- (a) The plane defined by the normal $\langle 1, 1, 1 \rangle$ and the point $(1, 0, 0)$.
- (b) The sphere of radius 1.
- (c) The sphere of radius 2 centered at $(1, 1, 1)$.
- (d) The ellipsoid $\frac{x^2}{4} + \frac{y^2}{2} + z^2 = 1$.
- (e) The hyperboloid $y^2 + z^2 = 1 + x^2$.

Problem 2. Parametrize everything from problem 1, but with the additional restrictions.

- (a) The part where $x > 0, y > 0, z > 0$.
- (b) Inside the top half of the cone $z^2 = x^2 + y^2$.
- (c) Where $x > 0$ (hint: think which choice of spherical coordinates will make this easiest)
- (d) Where $y > 0$. Where $y > 1/4$ (hint: think which parametrization is easiest).
- (e) Above the xy plane.

For all problems that follow, let S be a 2-d surface in \mathbb{R}^3 parametrized by $\mathbf{r}(u, v)$, where the surface is covered once as u, v range through D .

Whenever $\frac{\partial \mathbf{r}}{\partial u}$ and $\frac{\partial \mathbf{r}}{\partial v}$ are not colinear, the tangent plane at a point $(x_0, y_0, z_0) = \mathbf{r}(u_0, v_0)$ is defined by the point (x_0, y_0, z_0) and the normal vector $\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)$.

Problem 3. Find the equation of the tangent plane for the following.

- (a) (Textbook 16.6.33) The surface $x = u + v$, $y = 3u^2$, $z = u v$ at the point $(2, 3, 0)$.
- (b) The unit sphere at the point $(0, 0, 1)$ using three ways: (1) draw and guess, (2) using the level set method, (3) by parametrizing the sphere (be careful how you parametrize it!)
- (c) The hyperboloid from problem 1 at the point $(1, 1, 1)$

The formula for surface area of the parametrized surface S is

$$
A(S) = \iint\limits_D |\mathbf{r}_u \times \mathbf{r}_v| \, dA.
$$

Problem 4. Compute the areas of the following.

- (a) The part of the plane $x + y + z = 1$ where $x > 0, y > 0, z > 0$ using two ways: (1) use geometry and (2) use the parametric formula for the surface area.
- (b) The hyperboloid $y^2 + z^2 = 1 + x^2$ where $-2 \le x \le 2$.
- (c) (Textbook 16.6.47) The part of the paraboloid $y = x^2 + z^2$ that lies within the cylinder $x^2 + z^2 = 16$.
- (d) (Textbook 16.6.48) The spiral ramp given by $\mathbf{r}(u, v) = \langle u \cos v, u \sin v, v \rangle$ for $0 \le v \le \pi$ and $0 \le u \le 1$.

The integral of a scalar function f over the parametrized surface S is

$$
\iint\limits_{S} f(x, y, z) \, \mathrm{d}S = \iint\limits_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, \mathrm{d}A.
$$

Problem 5. Compute the following integrals.

- (a) (Textbook example 3) $\iint_S z \, dS$ where S is the part of the cylinder $x^2 + y^2 = 1$ together with the bottom $x^1 + y^2 \leq 1$ where $z = 0$ and the top, which is the part of the plane $z = 1 + x$ that is directly above the bottom.
- (b) (Textbook 16.7.6) $\iint_S xyz \, dS$ where S is the cone parametrized as $x = u \cos v$, $y = u \sin v$, $z = u$ for $0 \le v \le \pi/2$ and $0 \le u \le 1$.
- (c) (Textbook 16.7.14) $\iint_S y^2 x^2$ where S is the part of the cone $y^2 = x^2 + z^2$ where $0 \le y \le 5$.

Assuming that S is orientable and that $\mathbf{v} = \mathbf{r}_u \times \mathbf{r}_v$ defines an orientation, and that **F** is a vector field over \mathbb{R}^3 , the surface integral of **F** over S (aka the flux of **F** across S) is

$$
\iint\limits_{S} \mathbf{F} \cdot \, \mathrm{d} \mathbf{S} = \iint\limits_{S} \mathbf{F} \cdot \frac{\mathbf{v}}{|\mathbf{v}|} \, \mathrm{d} S
$$

Problem 6 Compute the fluxes of the following vector fields.

- (a) (Textbook example 4) $\mathbf{F} = \langle y, x, z \rangle$ across the unit sphere.
- (b) (Textbook 16.7.22) $\mathbf{F} = \langle z, y, x \rangle$ across the spiral ramp from **problem 4** with the upwards pointing normal.
- (c) (Textbook 16.7.24) $\mathbf{F} = \langle -x, -y, z^3 \rangle$ across the cone $z^2 = x^2 + y^2$ where $1 \le z \le 3$ with the downwards orientation.