1 Basic Skills

- I. Compute divergence of vector fields.
- II. Compute curl of vector fields.
- III. Know the terms conservative, incompressibble, and irrotational.
- IV. Know the Laplace operator.

2 Problem Types

- I. Given a vector field \mathbf{F} on \mathbb{R}^3 , prove that it is or is not conservative.
- II. Given a vector field \mathbf{F} , prove that it is or is not the curl of some other vector field.
- III. Use the second vector form of Green's Theorem, i.e.

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}s = \iint_D \mathrm{div} \, \mathbf{F} \, \mathrm{d}A$$

3 Divergence and Curl

Problem 0 (Warm-up).

- 1. Define "**curl**": what is the input space? what is the output space? for an item in the input space, how is the operation defined?
- 2. Define "divergence": what is the input space? what is the output space? for an item in the input space, how is the operation defined?

Problem 1. (Textbook 16.5.12) Let $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ and $f : \mathbb{R}^m \to \mathbb{R}$. State whether each expression is meaningful and explain why. Note that your answer may depend on n and m. If it does, you should be clear about for which m and/or n it makes sense and for which it does not.

- (a) curl f
- (b) grad \mathbf{F}
- (c) div(grad f)
- (d) $\operatorname{grad}(\operatorname{div} \mathbf{F})$
- (e) $\operatorname{curl}(\operatorname{curl} \mathbf{F})$
- (f) $\operatorname{div}(\operatorname{div} \mathbf{F})$
- (g) (grad f) × (div **F**)

Problem 2. (Textbook 16.5.1-8) Compute the curl and the divergence of the following vector fields.

- (a) $\langle xy^2z^2, x^2yz^2, x^2y^2z \rangle$
- (b) $\langle \ln(2y+3z), \ln(x+3z), \ln(x+2y) \rangle$

Problem 3. (Textbook 16.5.19) Is there a vector field **G** on \mathbb{R}^3 such that curl $\mathbf{G} = \langle x \sin y, \cos y, z - xy \rangle$?

Problem 4. (Textbook 16.5.23-29) Prove the following identities.

- (a) $\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$.
- (b) $\operatorname{div}(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \nabla f$.
- (c) $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl} \mathbf{F} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$.

Problem 5. (Textbook 16.5.33) Let $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}$ be a vector field, D a simply connected, bounded domain with boundary C.

(a) Using Green's theorem, prove that

$$\iint_{D} \nabla \cdot \mathbf{F} \, \mathrm{d}A = \oint_{C} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}s$$

where **n** is the outwards pointing normal (i.e. take the tangent vector to C at each point, normalize, and rotate by 90° clockwise)

(b) Let $f, g: \mathbb{R}^2 \to \mathbb{R}$ and let $\nabla^2 g$ be defined as $\nabla \cdot (\nabla g)$. Prove

$$\iint_{D} f \nabla^{2} g \, \mathrm{d}A = \oint_{C} f(\nabla g) \cdot \mathbf{n} \, \mathrm{d}s - \iint_{D} \nabla f \cdot \nabla g \, \mathrm{d}A$$

Hint: use 5 (a) with a good choice of \mathbf{F} . Then, also use 4 (b).

(c) Prove the formula for integration by parts in 1-variable calculus, i.e.

$$\int_{[a,b]} fg' \,\mathrm{d}x = fg \Big|_a^b - \int_{[a,b]} f'g \,\mathrm{d}x.$$

Compare your proofs for (b) and (c).

4 Green's Theorem: Other Form

Problem 1. Suppose $\mathbf{G} = \operatorname{curl} \left\langle x^2 y + \sin(e^x), x^2 + y^2 + z^2, \int_0^1 (x+s)(y-s)(z+s) \, \mathrm{d}s \right\rangle$. Compute

$$\oint_C \mathbf{G} \cdot \mathbf{n} \, \mathrm{d}s.$$

Problem 2. Let

$$f(x,y) = \begin{cases} \cos(\pi(x^2 + y^2)^2) & x^2 + y^2 \leq 1\\ 0 & \text{otherwise} \end{cases}$$

 $\iint \operatorname{div} \, \nabla f \, \mathrm{d}A$

and let $D = \{x^2 + y^2 \le 4\}.$