MATH 53 Quiz 8 (10/18)

Name:

Please write legibly and explain your work clearly. Answers without explanations may receive less (or no) credit.

Problem 1. (4 points) What is the volume of the region R that is bounded by the surfaces $z = 1 - (y - 1)^2$, x = y, x - 3 = y, and z = 0? Evaluate using a triple integral.

Solution: Because we want the volume between $z = 1 - (y - 1)^2$ and z = 0, we want to know the region where $1 - (y - 1)^2 \ge 0$, which is $0 \le y \le 2$. We are then given x bounds in terms of y and z bounds in terms of y, so we can write

$$\int_{0}^{2} \int_{y}^{y+3} \int_{0}^{1-(y-1)^{2}} 1 \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y = \int_{0}^{2} \int_{y}^{y+3} 1 - (y-1)^{2} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_{0}^{2} \int_{y}^{y+3} 2y - y^{2} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_{0}^{2} (2y - y^{2})(y + 3 - y) \, \mathrm{d}y$$
$$= 3 \int_{0}^{2} 2y - y^{2} \, \mathrm{d}y = 3 \left(y^{2} - \frac{y^{3}}{3} \right) \Big|_{0}^{2} = 3(4 - \frac{8}{3}) = 4$$

Problem 2. (4 points) Sketch the region given by the spherical coordinates $\cos \phi \leq \sqrt{2}/2$, $\pi \leq \theta \leq 2\pi$ and $1 \leq r \leq 2$. Label and explain your drawing.

Problem 3. (4 points) Compute the integral.

$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{0}^{\sqrt{x^2+y^2}} (x^2+y^2) \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y$$

Solution: We will use cylindrical coordinate $x = r \cos \theta, y = r \sin \theta, z = z$ to turn this into

$$\int_0^{2\pi} \int_0^2 \int_0^r r^2 r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta = 2\pi \int_0^2 r^3 z \Big|_{z=0}^{z=r} \mathrm{d}r = 2\pi \int_0^2 r^4 \, \mathrm{d}r = \frac{2\pi}{5} r^5 \Big|_0^2 = \frac{64\pi}{5}.$$