MATH 53 Quiz 5 (10/06)

Name:

Please write legibly and explain your work clearly. Answers without explanations may receive less (or no) credit.

Problem 1. Consider the function

$$f(x,y) = xy$$

and the region where $x^2 + y^2 \le 1$ and $y \le 2x - 1$

(a) (6 points) Write out a complete step-by-step plan for how to find the maximum and minimum values of f on this domain by using Lagrange multipliers.

Solution:

- 1. Find critical points of f by solving $\nabla f = 0$.
- 2. Check which critical points from (1) satisfy the constraints $x^2 + y^2 \le 1$ and $y \le 2x 1$. Save these for later.
- 3. Check the boundary $x^2 + y^2 = 1$ using Lagrange multipliers. This means define $g(x, y) = x^2 + y^2 1$ and solve the system of equations

$$\begin{cases} \nabla f = \lambda \nabla g \\ g = 0 \end{cases}$$

- 4. Check which critical points from (3) satisfy $y \leq 2x 1$. Save these for later.
- 5. Check the boundary y = 2x 1 using Lagrange multipliers. This means define h(x, y) = y 2x + 1 and solve the system of equations

$$\begin{cases} \nabla f = \lambda \nabla h \\ h = 0 \end{cases}$$

- 6. Check which critical points from (5) satisfy $x^2 + y^2 \leq 1$. Save these for later.
- 7. Find the points where both constraints are satisfied, i.e. solve y = 2x 1 and $x^2 + y^2 = 1$.
- 8. Compare the value of f at the points from (2), (4), (6), and (7).

(b) (6 points) Execute your plan.

Solution:

- 1. $\nabla f = \langle y, x \rangle$, so $\nabla f = 0$ at (0, 0).
- 2. We notice that $0^4 + 0^4 = 0 \le 1$ but $0 2(0) + 1 = 1 \le 0$. We throw away (0, 0).
- 3.

$$\nabla f = \lambda \nabla g \rightsquigarrow \qquad y = \lambda 4x^3, \qquad x = \lambda 4y^3, \qquad x^4 + y^4 - 1 = 0$$

From the first two equations, we see that $x = \lambda^2 x \implies \lambda = \pm 1 \implies x = \pm y$. Plugging in to $x^2 + y^2 = 1$ gets the solutions $x = \pm 1/\sqrt{2}$ and $y = \pm 1/\sqrt{2}$, which corresponds to 4 critical points: $(1/\sqrt{2}, 1/\sqrt{2}), (1/\sqrt{2}, -1/\sqrt{2}), (-1/\sqrt{2}, 1/\sqrt{2}), (-1/\sqrt{2}, -1/\sqrt{2})$.

- 4. Now we check which critical points satisfy $y 2x + 1 \leq 0$.
 - i. $(1/\sqrt{2}, 1/\sqrt{2})$: $1/\sqrt{2} 2/\sqrt{2} + 1 = -1/\sqrt{2} + 1 > 1 1 = 0$, so we throw this point out.
 - ii. $(-1/\sqrt{2}, 1/\sqrt{2}): \sqrt{2} + 2/\sqrt{2} + 1 > 1 > 0$, so we throw this point out.
 - iii. $(1/\sqrt{2}, -1/\sqrt{2})$: $-\sqrt{2} 2/\sqrt{2} + 1 = -3/\sqrt{2} + 1 < -3/2 + 1 = 1/2 \le 0$, so we keep this point.
 - iv. $(-1/\sqrt{2}, -1/\sqrt{2})$: $-\sqrt{2} + 2/\sqrt{2} + 1 = 1/\sqrt{2} + 1 > 1 > 0$, so we throw this point out.
- 5.

$$\nabla f = \lambda \nabla h \rightsquigarrow \qquad y = -\lambda 2, \qquad x = \lambda, \qquad y - 2x + 1 = 0.$$

The first two equations lead to y = -2x. We thus solve the equation -2x - 2x + 1 = 0 which gives us the critical point (1/4, -1/2).

- 6. We compute $(1/4)^2 + (-1/2)^2 < 1/4 + 1/2 \le 1$ so we save this point.
- 7. We solve y = 2x 1 and $x^2 + y^2 = 1$, which yields (4/5, 3/5) and (0, -1).
- 8. Compare values.
 - i. $f(1/\sqrt{2}, -1/\sqrt{2}) = -1/2$
 - ii. f(1/4, -1/2) = -1/8
 - iii. f(0, -1) = 0
 - iv. f(4/5, 3/5) = 12/25

From this we conclude that the minimum is at $(1/\sqrt{2}, -1/\sqrt{2})$ and the maximum is at (4/5, 3/5), with the listed values.