MATH 53 Quiz 4 (09/22)

Name:

Please write legibly and explain your work clearly. Answers without explanations may receive less (or no) credit.

Problem 1. (4 points)

(a) Let $\vec{\mathbf{u}} \in \mathbb{R}^2$ be a unit vector. Define in plain English the directional derivative in the direction $\vec{\mathbf{u}}$ of a differentiable function $f : \mathbb{R}^2 \to \mathbb{R}$ at the point $\mathbf{p} \in \mathbb{R}^2$.

Solution: The rate at which f changes as we change the input from \mathbf{p} in direction $\vec{\mathbf{u}}$.

(b) Now, let $f : \mathbb{R}^2 \to \mathbb{R}$ be a specific differentiable function such that

$$\nabla f(x,y) = \langle 3/2, \sqrt{3} \rangle.$$

For the following 3 questions, make sure your answer is a unit vector.

i. What is the direction $\vec{\mathbf{u}}$ that **maximizes** the directional derivative $D_{\vec{\mathbf{u}}}f$ at (x, y)? Solution:

$$\left\langle \frac{3/2}{\sqrt{9/4+3}}, \frac{\sqrt{3}}{\sqrt{9/4+3}} \right\rangle$$

ii. What is the direction $\vec{\mathbf{u}}$ that **minimizes** the directional derivative $D_{\vec{\mathbf{u}}}f$ at (x, y)? Solution:

$$\left\langle \frac{-3/2}{\sqrt{9/4+3}}, \frac{-\sqrt{3}}{\sqrt{9/4+3}} \right\rangle$$

iii. What is a direction $\vec{\mathbf{u}}$ that makes the directional derivative $D_{\vec{\mathbf{u}}}f$ at (x, y) equal to 0?

Solution:

$$\left\langle \frac{\sqrt{3}}{\sqrt{9/4+3}}, \frac{-3/2}{\sqrt{9/4+3}} \right\rangle$$

Problem 2. (4 points) What are all the critical points of $f(x, y) = (x^2 + y^2)^2 - (x^2 + y^2)$? [Hint: to visualize the surface, try using polar coordinates.]

Solution: We compute

$$\nabla f(x,y) = \left\langle 4x(x^2 + y^2) - 2x, 4y(x^2 + y^2) - 2y \right\rangle$$

And we try to solve $\nabla f = \langle 0, 0 \rangle$. This leads to the equations

$$2x(2(x^{2} + y^{2}) - 1) = 0 \qquad \qquad 2y(2(x^{2} + y^{2}) - 1) = 0.$$

We observe that x = 0 and $x^2 + y^2 = \frac{1}{2}$ both make the first equation zero.

- 1. If we take x = 0, then the second equation reads $2y(2y^2 1) = 0$ which has solutions at $y = \pm \frac{1}{\sqrt{2}}, 0$. The interesting critical point here is (0, 0).
- 2. When we consider the situation where $x^2 + y^2 = \frac{1}{2}$, we notice that both equations are automatically zero. Thus, the circle of radius $\frac{1}{\sqrt{2}}$ are all critical points as well. This includes the points $\left(0, \pm \frac{1}{\sqrt{2}}\right)$ that we found earlier.

In conclusion, the critical points are (0,0) and all the points on the circle of radius $1/\sqrt{2}$, i.e. the set $\{(x,y): x^2 + y^2 = 1/2\}$.

Problem 3. (4 points) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a twice-differentiable function, let z = f(x, y), and let $x = y = r^2 s$. Compute

$$\frac{\partial^2 z}{\partial r \partial s}$$

Solution: First we compute

$$\frac{\partial z}{\partial r} = f_x \frac{\partial x}{\partial r} + f_y \frac{\partial y}{\partial r} = 2rs(f_x(x, y) + f_y(x, y))$$

Next we compute

$$\frac{\partial}{\partial s} \left(\frac{\partial z}{\partial r} \right) = \frac{\partial}{\partial s} \left(2rs(f_x + f_y) \right) = 2r(f_x + f_y) + 2rs\left(\frac{\partial f_x}{\partial s}(x, y) + \frac{\partial f_y}{\partial s}(x, y) \right)$$
$$= 2r(f_x + f_y) + 2rs(r^2(f_{xx} + f_{xy}) + r^2(f_{xy} + f_{yy}))$$
$$= 2r(f_x + f_y) + 2r^3s(f_{xx} + 2f_{xy} + f_{yy})$$